Câu hỏi:

12/07/2024 3,064

Cho tam giác ABC. Gọi Bx và Cy lần lượt là các đường chứa tia phân giác của các góc ngoài tại đỉnh B và C. Gọi H và K lần lượt là hình chiếu của A trên Bx và Cy.

a) Chứng minh rằng tứ giác BCKH là hình thang;

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC. Gọi Bx và Cy lần lượt là các đường chứa tia phân giác của các góc ngoài tại đỉnh B và C a) Chứng minh rằng tứ giác BCKH  là hình thang; (ảnh 1)

a) Gọi D và E thứ tự là giao điểm của AH và AK với đường thẳng BC.


ΔABD có BH vừa là đường phân giác, vừa là đường cao nên là tam giác cân => HA = HD.

Tương tự, ta có: KA = KE.

Xét ΔADE có HK là đường trung

 bình nên HK // DE

=> HK // BC

Do đó tứ giác BCKH là hình thang.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E. Gọi M, N lần lượt là trung điểm của BE và CD. (ảnh 1)

Gọi O là trung điểm của BC.


Xét ΔEBC có OMlà đường trung bình

=> OM // CE OM=CE2.

Xét ΔDBC có ON là đường trung bình

=> ON // BD ON=BD2.

Ta có: M1^=AQP^,N1^=APQ^ (so le trong).

ΔAPQ cân tại AQ^=P^N1^=M1^OM=ONCE=BD.

Lời giải

Cho tam giác ABC, trực tâm H. Gọi O là giao điểm của ba đường trung trực. Chứng minh rằng khoảng cách từ O đến BC bằng nửa độ dài AH. (ảnh 1)

Gọi M và N lần lượt là trung điểm của BC và CA.

Gọi F và G lần lượt là trung điểm của AH và BG.

Ta có MN là đường trung bình của ΔABC, FG là đường trung bình của ΔABH.

Suy ra MN // AB và MN=12AB

FG = AB FG=12AB.

Do đó MN // FG và MN = FG. Dễ thấy OM//AD,ON//BE.

ΔOMN ΔHFG có: MN=FG;OMN^=HFG^;ONM^=HGF^ (hai góc có cạnh tương ứng song song).

Vậy ΔOMN=ΔHFGg.c.gOM=HF=AH2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP