Câu hỏi:

12/07/2024 2,845

Cho tam giác ABCcân tại A, đường cao AH và đường phân giác BD. Biết rằng AH=12BD, tính số đo các góc của tam giác ABC

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABCcân tại A, đường cao AH và đường phân giác BD. Biết rằng AH = 1/2BD, tính số đo các góc của tam giác ABC (ảnh 1)

Gọi M là trung điểm của BD thì: MD=12BD=AH.

ΔABC cân tại A, AH là đường cao nên HB = HC.

Ta có HM là đường trung bình của ΔBCDHM//AC.

Hình thang HMAD có hai đường chéo bằng nhau nên là hình thang cân.

ΔADH=ΔDAMc.c.cA1^=D1^90°C^=B1^+C^       (1)

Ta đặt B^=C^=x thì 190°x=x2+xx=36°

Vậy ΔABC B^=C^=36°;A^=108°.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E. Gọi M, N lần lượt là trung điểm của BE và CD. Đường thẳng MN cắt tia AB và AC lần lượt là tại P và Q. Hỏi hai điểm D và E phải có điều kiện gì để tam giác APQ cân tại A?

Xem đáp án » 12/07/2024 3,755

Câu 2:

Cho tam giác ABC, trực tâm H. Gọi O là giao điểm của ba đường trung trực. Chứng minh rằng khoảng cách từ O đến BC bằng nửa độ dài AH.

Xem đáp án » 12/07/2024 3,301

Câu 3:

Cho tam giác ABC. Gọi Bx và Cy lần lượt là các đường chứa tia phân giác của các góc ngoài tại đỉnh B và C. Gọi H và K lần lượt là hình chiếu của A trên Bx và Cy.

a) Chứng minh rằng tứ giác BCKH là hình thang;

Xem đáp án » 12/07/2024 2,909

Câu 4:

Cho tứ giác ABCD đường chéo BD là đường trung trực của AC. Gọi M, N lần lượt là trung điểm của AD và AB. Vẽ MEBC NFCDEBC,FCD. Chứng minh rằng ba đường thẳng ME, NF và AC đồng quy

Xem đáp án » 12/07/2024 2,498

Câu 5:

Cho tam giác ABC cân tại A,M là trung điểm của BC. Kẻ tia Mx song song với AC cắt AB tại E và tia My song song với AB cắt AC tại F. Chứng minh:

a) EF là đường trung bình của tam giác ABC

Xem đáp án » 13/10/2022 687

Câu 6:

Cho tam giác ABC, có AM là trung tuyến ứng với BC. Trên cạnh AB lấy điểm D và E sao cho AD = DE = EB. Đoạn CD cắt AM tại I. Chứng minh:

a) EM song song vói DC

Xem đáp án » 13/10/2022 623
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua