Câu hỏi:

11/07/2024 661

Cho đoạn thẳng AB và n điểm O1,O2,...,On không nằm giữa A và B sao cho O1A+O2A+...+OnA=O1B+O2B+...+OnB=a. Chứng minh rằng tồn tại một điểm M sao cho O1M+O2M+...+OnMa.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi M là trung điểm của AB và O là một điểm tùy ý không nằm giữa A và B.

- Trường hợp O nằm trên tia đối của tia AB hay tia đối của tia BA (h.3.16), ta chứng minh được OM=OA+OB2.  1

Cho đoạn thẳng AB và n điểm O1, O2, ....,On không nằm giữa A và B sao cho O1A + O2A +... + OnA = O1B + O2B +... +OnB = a. C (ảnh 1)

- Trường hợp O không thẳng hàng với A và B (h.3.17).

Cho đoạn thẳng AB và n điểm O1, O2, ....,On không nằm giữa A và B sao cho O1A + O2A +... + OnA = O1B + O2B +... +OnB = a. C (ảnh 2)

Gọi N là trung điểm của OB, khi đó MN là đường trung bình của ΔOAB,MN=OA2.

Xét ΔOMN, ta có: OM<MN+ON

OM<OA+OB2.  2

Từ (1) và (2) suy ra: OMOA+OB2.  *

Áp dụng hệ thức (*) đối với n điểm O1,O2,,On ta có:

O1MO1A+O1B2;O2MO2A+O2B2;;OnMOnA+OnB2.

Cộng từng vế các bất đẳng thức trên ta được:

O1M+O2M+OnMO1A+O1B2+O2A+O2B2++OnA+OnB2=O1A+O2A++OnA2+O1B+O2B++OnB2=a2+a2=a

Như vậy điểm cần tìm chính là trung điểm M của AB.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E. Gọi M, N lần lượt là trung điểm của BE và CD. (ảnh 1)

Gọi O là trung điểm của BC.


Xét ΔEBC có OMlà đường trung bình

=> OM // CE OM=CE2.

Xét ΔDBC có ON là đường trung bình

=> ON // BD ON=BD2.

Ta có: M1^=AQP^,N1^=APQ^ (so le trong).

ΔAPQ cân tại AQ^=P^N1^=M1^OM=ONCE=BD.

Lời giải

Cho tam giác ABC, trực tâm H. Gọi O là giao điểm của ba đường trung trực. Chứng minh rằng khoảng cách từ O đến BC bằng nửa độ dài AH. (ảnh 1)

Gọi M và N lần lượt là trung điểm của BC và CA.

Gọi F và G lần lượt là trung điểm của AH và BG.

Ta có MN là đường trung bình của ΔABC, FG là đường trung bình của ΔABH.

Suy ra MN // AB và MN=12AB

FG = AB FG=12AB.

Do đó MN // FG và MN = FG. Dễ thấy OM//AD,ON//BE.

ΔOMN ΔHFG có: MN=FG;OMN^=HFG^;ONM^=HGF^ (hai góc có cạnh tương ứng song song).

Vậy ΔOMN=ΔHFGg.c.gOM=HF=AH2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP