Câu hỏi:

12/07/2024 2,860

Cho ΔABC có AB < AC, AH là đường cao. Gọi M, N, K lần lượt là trung điểm của AB, AC, BC.

a) Chứng minh MNKH là hình thang cân.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho ABC có AB < AC, AH là đường cao. Gọi M, N, K lần lượt là trung điểm của AB, AC, BC.  a) Chứng minh MNKH là hình thang cân. (ảnh 1)

a) MN là đường trung bình của ΔABCMN//BCMN//HK hayMI//BH 

MI//BHMA=MBIA=IH

ΔMAH cân tại A nên HMI^=IMA^  (1)

 NK là đường trung bình của ΔABCNK//ABMNK^=IMA^ (hai góc ở vị tri so le trong) (2)

Từ (1) và (2) suy ra HMI^=MNK^ (so le trong) hay HMN^=MNK^ 

Tứ giác MNHK có MN // HK nên tứ giác là hình thang, lại có HMN^=MNK^ là hình thang cân.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A, đường cao AH. Gọi M là trung điểm của HC, K là trung điểm của AH. Chứng minh rằng BK vuông góc với AM. (ảnh 1)

Tam giác AHC có AK = KH và HM = MC => MK là đường trung bình của ΔAHC.

=> MK // AC. Ta lại có ACAB nên  

Tam giác ABM có:AHBM và MKAB

=> K là trực tâm, suy ra BKAM.

Lời giải

Cho tứ giác ABCD có AB = CD. Gọi E, F lần lượt là trung điểm của AC, DB. Đường thẳng EF lần lượt cắt AB, CD tại H,K (ảnh 1)

E là trung điểm của AC, F là trung điểm của BD

Gọi M là trung điểm của BC

Nên EM là đường trung bình của Cho tứ giác ABCD có AB = CD. Gọi E, F lần lượt là trung điểm của AC, DB. Đường thẳng EF lần lượt cắt AB, CD tại H,K (ảnh 2)

Cho tứ giác ABCD có AB = CD. Gọi E, F lần lượt là trung điểm của AC, DB. Đường thẳng EF lần lượt cắt AB, CD tại H,K (ảnh 3)EM//ABMEF^=AHK^

Và FM là đường trung bình của Cho tứ giác ABCD có AB = CD. Gọi E, F lần lượt là trung điểm của AC, DB. Đường thẳng EF lần lượt cắt AB, CD tại H,K (ảnh 4)

Cho tứ giác ABCD có AB = CD. Gọi E, F lần lượt là trung điểm của AC, DB. Đường thẳng EF lần lượt cắt AB, CD tại H,K (ảnh 5) FM//CDEFM^=HKD^

Mà AB = CD nên AB = CD FME cân

MEF^=AHK^=EFM^=HKD^ 

AHK^=HKD^KHB^=HKC^kề bù)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP