Câu hỏi:

12/07/2024 2,602

Dùng tính chất đường trung bình của tam giác chứng minh trong tam giác vuông đường  trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Dùng tính chất đường trung bình của tam giác chứng minh trong tam giác vuông đường  trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền (ảnh 1)

Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Khi đó ΔBCD  cân tại C  nên BC = CD 

AM là đường trung bình của ΔBCDAM=12DC=12BC  

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A, đường cao AH. Gọi M là trung điểm của HC, K là trung điểm của AH. Chứng minh rằng BK vuông góc với AM. (ảnh 1)

Tam giác AHC có AK = KH và HM = MC => MK là đường trung bình của ΔAHC.

=> MK // AC. Ta lại có ACAB nên  

Tam giác ABM có:AHBM và MKAB

=> K là trực tâm, suy ra BKAM.

Lời giải

Cho tứ giác ABCD có AB = CD. Gọi E, F lần lượt là trung điểm của AC, DB. Đường thẳng EF lần lượt cắt AB, CD tại H,K (ảnh 1)

E là trung điểm của AC, F là trung điểm của BD

Gọi M là trung điểm của BC

Nên EM là đường trung bình của Cho tứ giác ABCD có AB = CD. Gọi E, F lần lượt là trung điểm của AC, DB. Đường thẳng EF lần lượt cắt AB, CD tại H,K (ảnh 2)

Cho tứ giác ABCD có AB = CD. Gọi E, F lần lượt là trung điểm của AC, DB. Đường thẳng EF lần lượt cắt AB, CD tại H,K (ảnh 3)EM//ABMEF^=AHK^

Và FM là đường trung bình của Cho tứ giác ABCD có AB = CD. Gọi E, F lần lượt là trung điểm của AC, DB. Đường thẳng EF lần lượt cắt AB, CD tại H,K (ảnh 4)

Cho tứ giác ABCD có AB = CD. Gọi E, F lần lượt là trung điểm của AC, DB. Đường thẳng EF lần lượt cắt AB, CD tại H,K (ảnh 5) FM//CDEFM^=HKD^

Mà AB = CD nên AB = CD FME cân

MEF^=AHK^=EFM^=HKD^ 

AHK^=HKD^KHB^=HKC^kề bù)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP