Câu hỏi:
13/10/2022 780
Cho tứ giác ABCD có chụ vi là 4a. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Chứng minh rằng trong hai đoạn thẳng EG và HF có một đoạn thẳng có độ dài không lớn hơn a.
Cho tứ giác ABCD có chụ vi là 4a. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Chứng minh rằng trong hai đoạn thẳng EG và HF có một đoạn thẳng có độ dài không lớn hơn a.
Quảng cáo
Trả lời:

Gọi M là trung điểm của BD
Xét có HM là đường trung bình nên
Xét có MF là đường trung bình nên
Xét ba điểm M, H, F có
Chứng minh tương tự, ta được: .
Vậy
Suy ra một trong hai đoạn HF, EG có độ dài không lớn hơn a.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Qua M kẻ MN // BD.
Trong , có I là trung điểm của AM, .
Trong , có M là trung điểm của BC, .
.
Lời giải

Gọi O là giao điểm của AG và MN
Gọi H là trung điểm của BG
Theo tính chất của trọng tâm, ta có: BH = HG = GN
Xét có MH là đường trung bình => MH // AG
Xét có AG // MH và NG = GH nên ON = OM
Vậy AG chia đôi NM.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.