Câu hỏi:

12/07/2024 16,497

Cho tam giác ABC, trung tuyến AM. Gọi I là trung điểm của AM, D là giao điểm của BI và AC

a) Chứng minh: AD=12DC

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC, trung tuyến AM. Gọi I là trung điểm của AM, D là giao điểm của BI và AC  a) Chứng minh: AD = 1/2DC (ảnh 1)

a) Qua M kẻ MN // BD.

Trong ΔAMN, có I là trung điểm của AM, IDMNAD=DN.

Trong ΔBCD, có M là trung điểm của BC,  MNBDND=NC.

AD=DN=NCAD=12DC.

H

Hồng Thơm Lê

Cho tam giác ABC, đường trung tuyến AM. Gọi I là trung điểm của AM, D là giao điểm của BI và là trung điểm của AM
a) Chứng minh rằng AD= 1/2 DC
b) Tính tỉ số các độ dài BD và ID
Vẽ cả hình nx nha mng~

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tứ giác ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Gọi G là trọng tâm của tam giác BCD. Chứng minh AG chia đôi MN. (ảnh 1)

Gọi O là giao điểm của AG và MN

Gọi H là trung điểm của BG

Theo tính chất của trọng tâm, ta có: BH = HG = GN

Xét ΔABG có MH là đường trung bình => MH // AG

Xét ΔHMN có AG // MH và NG = GH nên ON = OM

Vậy AG chia đôi NM.

Lời giải

Tính độ dài đường trung bình của một hình thang cân biết rằng các đường chéo của nó vuông góc với nhau và đường cao bằng 10cm . (ảnh 1)

Gọi giao điểm của AC và BD là G. Đường thẳng đi qua G vuông góc với AB, CD lần lượt tại E và F.

Theo tính chất đoạn chắn ta có  EF = AH = 10cm.

Ta chứng minh được ΔBCD=ΔADC(c.c.c);ΔBCA=ΔADB(c.c.c) 

BDC^=ACD^;BAC^=ABD^

ΔABG;ΔCDG cân tại G.

Mà GE, GF là đường cao của ΔABG;ΔCDG nên nó đồng thời là đường trung tuyến ứng với AB, CD.

Xét ΔABG;ΔCDG vuông tại G có GE, GF là đường trung tuyến.

GE=12AB;GF=12CD (Do trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)

GE+GF=12AB+12CD=12AB+CDEF=12AB+CD

MN=12AB+CD(vì MN là đường trung bình của hình thang ABCD)

Suy ra: EF = MN = 10cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay