Câu hỏi:
16/10/2022 588b) Gọi G là giao điểm của BM và EK. Chứng minh rằng G là trọng tâm của hai tam giác ABC và tam giác DEF.
Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).
Quảng cáo
Trả lời:
b) Gọi G là giao điểm của EK, BM. I, H là trung điểm của BG, EG.
- Chứng minh tứ giác HMKI là hình bình hành:
Ta có: H là trung điểm của GE (gt)
I là trung điểm của GB (gt)
=> HI là đường trung bình của (1)
+) Tứ giác ABKM là hình bình hành ( cm câu a)
Mà E đối xứng với B qua A => A là trung điểm của BE
(2)
Từ (1) và (2) => tứ giác HMKI là hình bình hành
- Suy ra GH = GK, GI = GM, từ đó ta có => G là trọng tâm tam giác DEF cũng là trọng tâm tam giác ABC.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bình hành ABCD. Vẽ E là điểm đối xứng của A qua B, F là điểm đối xứng của A qua D. Chứng minh rằng: E là điểm đối xứng của F qua C.
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Cho tam giác ABC vuông tại A ( AB < AC), điểm D thuộc cạnh huyền BC. Vẽ điểm M và điểm N đối xứng với D lần lượt qua AB và AC. Chứng minh rằng:
a) M và N đối xứng qua A.
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích, diện tích xung quanh của hình chóp tứ giác đều (có lời giải)
10 Bài tập Nhận biết hai hình đồng dạng, hai hình đồng dạng phối cảnh (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
Cách tìm mẫu thức chung cực hay, nhanh nhất
10 Bài tập Ứng dụng của xác suất thực nghiệm trong một số bài toán đơn giản (có lời giải)
về câu hỏi!