Câu hỏi:

12/07/2024 929

Một người đo chiều cao của một cây nhờ chôn một cọc xuống đất, cọc cao 2m và đặt xa cây 15m. Sau khi người lùi xa cách cọc 0,8m thì nhìn thấy đầu cọc và đỉnh cây cùng nằm trên một đường thẳng. Hỏi cây cao bao nhiêu mét, biết rằng khoảng cách từ chân đến mắt người ấy là 1,6m?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Học sinh tự vẽ hình

Minh họa đề bài bằng vẽ hình, ta có:

  • Chiều cao của cây là AA'.
  • Độ dài của cọc là BB'=2m.
  • Khoảng cách từ chân đến mắt người đo là MN=1,6m.
  • Khoảng cách từ cọc đến cây là A'B'=15m.
  • Khoảng cách từ người đo đến cọc là NB'=0,8m.

Từ M kẻ MK vuông góc với AA' thì cũng vuông góc với BB' tại H (vì BB'//AA').

Suy ra: MK=MH+HK=NB'+A'B'=0,8+15=15,8m

            BH=BB'HB'=BB'MN=21,6=0,4m

Xét ΔMHB  ΔMKA (hai tam giác vuông có chung góc M)

      BHAK=MHMKAK=BH.MKMH=0,4.15,80,8=7,9m

Do đó, AA'=AK+KA'=7,9+1,6=9,5m

Vậy, chiều cao của cây đo được là 9,5 mét.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có MN//BCΔAMN  ΔACB

      AMAC=MNBCMN=AM.BCAC=AM.10100=110AM.

Do đó, khi đọc AM=5,5cm thì đọc MN=d=110.5,5cm=5,5mm.

      Trong bài toán này, ta đã áp dụng định lí: “Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì tạo thành một tam giác mới đồng dạng với tam giác đã cho” để ghi lại các vạch trên thước AC.

Lời giải

Media VietJack

Kẻ tia Ax vuông góc với AB.

Đặt trên tia Ax hai đoạn thẳng liên tiếp AD=m; DC=n.

Từ D dựng DF=a và vuông góc với AC sao cho B,F,C thẳng hàng.