Câu hỏi:

12/07/2024 1,571

c) Tìm các số nguyên a để hệ phương trình có nghiệm nguyên

 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c)       Hệ phương trình có nghiệm nguyên: xya2+1a2a+1a2a

Điều kiện cần:  x=a2+1a2=1+1a21a2a2=1a=±1

Điều kiện đủ:

a=1y=0 (nhận)

a=1y=2 (nhận)

Vậya=±1 hệ phương trình đã cho có nghiệm nguyên.

Với a0  thì hệ phương trình đã cho có nghiệm duy nhất x;y=a2+1a2;a+1a2

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

b) Chứng minh rằng với mọi giá trị của m thì hệ phương trình luôn có nghiệm duy nhất (x,y)  thỏa mãn: 2x+y3

Xem đáp án » 12/07/2024 3,596

Câu 2:

b) Tìm m để hệ phương trình có nghiệm duy nhất  (x,y) thỏa mãn x2y1

Xem đáp án » 12/07/2024 3,163

Câu 3:

Cho hệ phương trình: mx+m+1y=1m+1xmy=8m+3 .

Chứng minh hệ luôn có nghiệm duy nhất x;y

Xem đáp án » 12/07/2024 2,924

Câu 4:

b) Tìm m để hệ phương trình có nghiệm duy nhất x,y  trong đó x,y trái dấu.

Xem đáp án » 12/07/2024 2,793

Câu 5:

Cho hệ phương trình: x2y=5mxy=4
a) Giải hệ phương trình với m=1  .

Xem đáp án » 12/07/2024 2,561

Câu 6:

Cho hệ phương trình : 2x+ay=4ax3y=5

a) Giải hệ phương trình với a=1 

Xem đáp án » 12/07/2024 2,075

Câu 7:

b) Tìm a để hệ phương trình có nghiệm duy nhất.

Xem đáp án » 12/07/2024 1,679
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua