Câu hỏi:

12/07/2024 1,044

b) Tìm a để hệ phương trình có nghiệm duy nhất.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b)       Ta xét 2 trường hợp:

+ Nếu a=0  , hệ có dạng:2x=43y=5x=2y=53 . Vậy hệ có nghiệm duy nhất

+ Nếu a0 , hệ có nghiệm duy nhất khi và chỉ khi:  2aa3a26(luôn đúng, vì a20  với mọi a)

Do đó, với a0 , hệ luôn có nghiệm duy nhất.

Tóm lại hệ phương trình đã cho có nghiệm duy nhất với mọi a.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

b) Chứng minh rằng với mọi giá trị của m thì hệ phương trình luôn có nghiệm duy nhất (x,y)  thỏa mãn: 2x+y3

Xem đáp án » 12/07/2024 3,261

Câu 2:

Cho hệ phương trình: mx+m+1y=1m+1xmy=8m+3 .

Chứng minh hệ luôn có nghiệm duy nhất x;y

Xem đáp án » 12/07/2024 2,780

Câu 3:

b) Tìm m để hệ phương trình có nghiệm duy nhất  (x,y) thỏa mãn x2y1

Xem đáp án » 12/07/2024 2,684

Câu 4:

b) Tìm m để hệ phương trình có nghiệm duy nhất x,y  trong đó x,y trái dấu.

Xem đáp án » 12/07/2024 2,313

Câu 5:

Cho hệ phương trình: x2y=5mxy=4
a) Giải hệ phương trình với m=1  .

Xem đáp án » 12/07/2024 2,109

Câu 6:

Cho hệ phương trình : 2x+ay=4ax3y=5

a) Giải hệ phương trình với a=1 

Xem đáp án » 12/07/2024 1,850

Câu 7:

d) Tìm a để nghiệm của hệ phương trình thỏa mãn x+y  đạt GTNN.

 

Xem đáp án » 12/07/2024 1,387

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store