Câu hỏi:
12/07/2024 933Cho hình thang ABCD có . Qua giao điểm O của hai đường chéo, kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự ở E và G. Chứng minh rằng .
Quảng cáo
Trả lời:
Vì nên (theo hệ quả định lý Ta-lét) (1).
Vì nên (theo hệ quả định lý Ta-lét) (2).
Từ (1) và (2) ta được
Tương tự có:
Vậy .
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Một đường thẳng đi qua đỉnh A của hình bình hành ABCD cắt BD, BC, DC theo thứ tự ở E, K, G. Chứng minh rằng: Khi đường thẳng thay đổi vị trí nhưng vẫn đi qua A thì tích BK.DG có giá trị không thay đổi.
Câu 3:
Một đường thẳng đi qua đỉnh A của hình bình hành ABCD cắt BD, BC, DC theo thứ tự ở E, K, G. Chứng minh rằng:
Câu 4:
Cho hình thang ABCD ( ). Điểm E thuộc cạnh AD, điểm F thuộc cạnh BC sao cho . Gọi M, N theo thứ tự là giao điểm của EF với BD, AC.
Chứng minh rằng EM=NF.
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 1)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
10 Bài tập Nhận biết hai hình đồng dạng, hai hình đồng dạng phối cảnh (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận