Câu hỏi:

12/07/2024 799

Cho hình thang ABCD có AB=a,  CD=b . Qua giao điểm O của hai đường chéo, kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự ở E và G. Chứng minh rằng 1OE=1OG=1a+1b .

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

 OE//AB  nên OEAB=DEDAOEa=DEDA  (theo hệ quả định lý Ta-lét) (1).

OE//CD  nên OEDC=AEDAOEb=AEDA  (theo hệ quả định lý Ta-lét) (2).

Từ (1) và (2) ta được

OEa+OEb=DEDA+AEDA=1OE1a+1b=11a+1b=1OE

Tương tự có: 1a+1b=1OG

Vậy 1OE=1OG=1a+1b .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một đường thẳng đi qua đỉnh A của hình bình hành ABCD cắt BD, BC, DC theo thứ tự ở E, K, G. Chứng minh rằng: 1AE=1AK+1AG

Xem đáp án » 12/07/2024 2,281

Câu 2:

Một đường thẳng đi qua đỉnh A của hình bình hành ABCD cắt BD, BC, DC theo thứ tự ở E, K, G. Chứng minh rằng: Khi đường thẳng thay đổi vị trí nhưng vẫn đi qua A thì tích BK.DG có giá trị không thay đổi. 

Xem đáp án » 17/10/2022 944

Câu 3:

Một đường thẳng đi qua đỉnh A của hình bình hành ABCD cắt BD, BC, DC theo thứ tự ở E, K, G. Chứng minh rằng: AE2=EK.EG

Xem đáp án » 17/10/2022 532

Câu 4:

Cho hình thang ABCD (AB//CD ). Điểm E thuộc cạnh AD, điểm F thuộc cạnh BC sao cho DEDA=BFBC=13 . Gọi M, N theo thứ tự là giao điểm của EF với BD, AC.

Chứng minh rằng EM=NF.

Xem đáp án » 12/07/2024 265

Bình luận


Bình luận