Câu hỏi:

12/07/2024 330

Cho hình thang ABCD (AB//CD ). Điểm E thuộc cạnh AD, điểm F thuộc cạnh BC sao cho DEDA=BFBC=13 . Gọi M, N theo thứ tự là giao điểm của EF với BD, AC.

Chứng minh rằng EM=NF.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Kẻ AA',  CC',  EE',FF'  vuông góc với BD (A',  C',  E',  F' thuộc BD).

EE'//AA'  (cùng vuông góc với BD)

 EE'AA'=DEDA=13EE'=13AA'

Tương tự có:  FF'=13CC'

CC'//AA'  (cùng vuông góc với BD)

 AA'CC'=OAOC

 EE'//FF'  (cùng vuông góc với BD)

EMMF=EE'FF'=13AA'13CC'=AA'CC'=OAOC (1)
 

Tương tự FNNE=OBOD  (2)

Măt khác vì AB//CDOAOC=OBOD  (3)

Từ (1), (2), (3) có EMMF=FNNEEMEM+MF=FNFN+NEEMEF=FNEFEM=FN .

Vậy  EM=NF

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

AD//BKAEAK=DEDBAB//DGAEAG=BEBD ;

nên  AEAK+AEAG=DEBD+BEBD=BDBD=11AK+1AG=1AE

Vậy 1AK+1AG=1AE .

Lời giải

Media VietJack

Đặt  AB=a,  AD=b

AB//CGBKKC=ABCG=aCG;AD//CKKCAD=CGDG=KCb ;  nên  BKa=bDG

BK.DG=a.b (hằng số).

Vậy khi đường thẳng thay đổi vị trí nhưng vẫn đi qua A thì tích BK.DG có giá trị không thay đổi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP