Cho tam giác ABC nhọn, các đường cao AD, BE, CF đồng quy tại H. Gọi M, N, P, Q lần lượt là hình chiếu của D trên AB, BE, CF, CA. Chứng minh rằng M, N, P, Q thẳng hàng.
Cho tam giác ABC nhọn, các đường cao AD, BE, CF đồng quy tại H. Gọi M, N, P, Q lần lượt là hình chiếu của D trên AB, BE, CF, CA. Chứng minh rằng M, N, P, Q thẳng hàng.
Quảng cáo
Trả lời:

Vì (cùng vuông góc với AC) nên (định lý Ta-lét) (1).
Vì (cùng vuông góc với AB) nên (định lý Ta-lét) (2).
Từ (1) và (2) ta có (định lý Ta-lét đảo) (*).
Tương tự có (**)
Từ (*) và (**) có MN, MQ, PQ trùng nhau hay M, N, P, Q thẳng hàng. Vậy M, N, P, Q thẳng hàng
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì nên (định lý Ta-lét) (1)
Vì nên (định lý Ta-lét) (2)
Từ (1) và (2) ta có (định lý Ta-lét đảo).
Vậy .
Lời giải

Gọi M, O, N lần lượt là giao điểm của EF, AC, GH với BD.
Vì nên (hệ quả định lý Ta-lét) (1).
Vì nên (hệ quả định lý Ta-lét) (2).
Từ (1) và (2) ta có: (*)
Tương tự có: (**)
Từ (*) và (**) có mà suy ra GE, BD, HF đồng quy. Vậy EG, DB, HF đồng quy.