Câu hỏi:

13/07/2024 601

c) Chứng minh rằng đồ thị (d) của hàm số  (1) luôn đi qua một điểm cố định với  mọi giá trị của m

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c)  Viết lại hàm số (1) dưới dạng y=m2x+1+1.

Ta thy với mọi giá trị của m  khi  x=12 thì y=1

Vậy đồ thị (d) của hàm số (1)  luôn đi qua một điểm cố định là điểm M12;1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)       Để đồ thị hàm số y=(m3)x+m+2  cắt trục tung tại điểm có tung độ bằng – 3    x = 0; y = - 3

Ta có:   3= m  3.0+m+2 

m +2=3

m=5

Vậy với m=-5 thì đồ thị hàm số cắt trục tung  tại điểm có tung độ bằng  -3

Lời giải

2) Toạ độ giao điểm của đồ thị hàm số với y=2x+ m đồ thị hàm số y=3x2  là nghiệm của hệ phương trình

 y = 2x + m y = 3x - 2 3x - 2 = 2x + m y = 3x - 2 3x - 2x = m + 2         y =  3x - 2 

x = m + 2 y = 3. m + 2 - 2 x  =  m + 2 y  =  3m + 6 - 2 x = m+ 2 y = 3m +4    

Vậy toạ độ giao điểm của đồ thị hàm số y=2x+m  với đồ thị hàm số  y=3x2 m+ 2 ; 3m +4

 Để đồ thị hàm số  cắt đồ thị hàm số  y= 3x -2 trong góc phần tư thứ IV thì :

   x>0y<0 m  + 2 > 03m + 4 <  0  m  > - 2m  <  -43 2<m<43       

 Vậy với  2<m<43   thì đồ thị hàm số y=2x+m  cắt đồ thị hàm số y=3x2  trong góc phần tư thứ IV

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP