Câu hỏi:

19/08/2025 658 Lưu

c) Chứng minh rằng đồ thị (d) của hàm số  (1) luôn đi qua một điểm cố định với  mọi giá trị của m

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

c)  Viết lại hàm số (1) dưới dạng y=m2x+1+1.

Ta thy với mọi giá trị của m  khi  x=12 thì y=1

Vậy đồ thị (d) của hàm số (1)  luôn đi qua một điểm cố định là điểm M12;1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)       Để đồ thị hàm số y=(m3)x+m+2  cắt trục tung tại điểm có tung độ bằng – 3    x = 0; y = - 3

Ta có:   3= m  3.0+m+2 

m +2=3

m=5

Vậy với m=-5 thì đồ thị hàm số cắt trục tung  tại điểm có tung độ bằng  -3

Lời giải

c) Giả sử  M(x0;y0) là điểm cố định của đường thẳng (d).

Khi đó ta có:   y0=(2m+1)x0+m+4m(2x0+1)m+x0y0+4=0m

2x0+1=0x0y0+4=0x0=12y0=72

Vậy khi m thay đổi đường thẳng (d) luôn đi qua điểm cố định M12;72

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP