Câu hỏi:

13/07/2024 14,797

Tỉm giá trị m để phương trình:

a) 2x2+mx+m3=0  có 2 nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Xét phương trình 2x2+mx+m3=0  để phương trình có hai nghiệm trái dấu thì: a.c<02.(m3)<0m<3  .  

Với m<3  , áp dụng hệ thức Vi – ét ta có:

 x1+x2=bax1.x2=cax1+x2=m2x1.x2=m32

Có nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương suy ra :

x1>x2trong đó x1<0  ;  x2>0 nên x1>x2x1+x2<0m2<0m>0 .

Từ (1) và (2) suy ra  0<m<3.

Vậy 0<m<3  thì phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương.

Chú ý: Đề bài có nghĩa tìm điều kiện để phương trình có 2 nghiệm trái dấu và tổng hai nghiệm âm.

Bình luận


Bình luận

Tr Vũ Khánh Vy
20:51 - 24/02/2025

Không phải tìm đk để pt có 2 nghiệm ạ, kiểu dùng dentaa xong cho >=0 ấy ạ

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt X=x2X0

Phương trình trở thành X4(m2+4m)X2+7m1=0  (1)

Phương trình có 4 nghiệm phân biệt Û (1) có 2 nghiệm phân biệt dương         

  Δ>0S>0P>0   (I)   m2+4m24(7m1)>0m2+4m>07m1>0

Với điều kiện (I), (1) có 2 nghiệm phân biệt dương , .

Þ Phương trình đã cho có 4 nghiệm

x1,2=±X1 ;

x3,4=±X2

x12+x22+x32+x42=2(X1+X2)=2(m2+4m)

Vậy ta có 2(m2+4m)=10m2+4m5=0m=1m=5

Với m=1 , (I) thỏa mãn

Với m=5 , (I) không thỏa mãn.        

Vậy  m=1 là giá trị cần tìm.

Lời giải

b) Xét phương trình mx25m2x+6m5=0

Để để phương trình có hai nghiệm nghịch đảo nhau thì:

a0Δ>0x1.x2=1m05m224.m.6m5>06m5m=1

m0m2+4>06m5=m(luôn đúng với m ) m=1  (thỏa mãn)

Vậy m=1 thì phương trình có hai nghiệm nghịch đảo nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay