Khóa học đang cập nhật!

Câu hỏi:

19/10/2022 1,285

2. Chứng minh rằng CEFD là tứ giác nội tiếp.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

2) Tứ giác ACDB  nội tiếp (O)  ABD^ +ACD^ = 180o

ECD^ +ACD^ = 180o  ( Vì là hai góc kề bù) ECD^=DBA^

Theo trên ABD^=DFB^ , ECD^=DBA^ECD^=DFB^ . Mà EFD^ +DFB^ = 180o  ( Vì là hai góc kề bù) nên ECD^ +AEFD^ = 180o , do đó tứ giác CEFD  là tứ giác nội tiếp.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có : Tứ giác ABCD nội tiếp (O) Ta phải chứng minh:  AC. BD = AB. DC + AD. BC (ảnh 1)
Lấy E Î BD sao cho

Þ ΔDAE ΔCAB  (g. g)

ÞTa có : Tứ giác ABCD nội tiếp (O) Ta phải chứng minh:  AC. BD = AB. DC + AD. BC (ảnh 2)

Þ AD. BC = AC. DE (1)

Tương tự:  (g. g)

Þ  BECD=ABAC

Þ BE. AC = CD. AB (2)

Từ (1) và (2) Þ AD. BC + AB. CD = AC. DE + EB. AC

                    Þ AD. BC + AB. CD = AC. DB (đpcm)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP