Câu hỏi:

12/07/2024 2,854

Cho hình chữ nhật ABCD (AD < AB < 2AD). Vẽ các tam giác vuông cân ABI , CDF I=K=90°, I và K nằm trong hình chữ nhật. Gọi E là giao điểm của AI và DK, F là giao điểm của BI và CK. Chứng minh rằng:

a) EF song song với CD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chữ nhật ABCD (AD < AB < 2AD). Vẽ các tam giác vuông cân ABI , CDF Chứng minh rằng:  a) EF song song với CD. (ảnh 1)

a) Tam giác KCD cân tại K nên KD = KC (1).

ΔEAD=ΔFBC (g.c.g) nên DE = CF (2).

Từ (1) và (2) suy ra: KDDE=KCCFKE=KF.

Tam giác vuông KEF có KE = KF nên E1^=45°.

Ta lại có: D2^=45°EF//CD (2 góc đồng vị bằng nhau).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình vuông ABCD. Gọi E, F lần lượt trên cạnh AB, AD sao cho AE = DF . Chứng minh rằng DE = CF và DE vuông góc CF  (ảnh 1)

Gọi I là giao điểm của DE và CF.

Xét hai tam giác ADE và DCF có:

AD = DC (vì ABCD là hình vuông).

EAD^=FDC^=90° .

AE = DF (theo giả thiết)

Vậy ΔADE =ΔDCF , khi đó ta có:

DE = CF và ADE^=DCF^ .

Mặt khác DCF^+DFC^=90° , suy ra ADE^+DFC^=90°DIF^=90° .

Vậy DECF .

Lời giải

Cho hình vuông ABCD. Lấy điểm M tùy ý trên cạnh BC. Từ M, vẽ một đường thẳng cắt cạnh CD tại K sao cho: góc AMB = góc AMK. Chứng minh góc KAM = 45 độ (ảnh 1)

MA là phân giác góc BMK nên MA là trục đối xứng của hai đường thẳng MK và MB.

Gọi I là điểm đối xứng của K qua MA, suy ra I thuộc đường thẳng BC.

Ta có AI=AK , AB=AD .

Hai tam giác vuông ABI và ADK có hai cạnh bằng nhau nên ΔABI = ΔADK.

Từ đó ta có IAB^=KAD^.

IAK^=IAB^+BAK^=KAD^+BAK^=90°.

Vậy ta có: MAK^=12IAK^=45°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay