Câu hỏi:

12/07/2024 5,874

Cho hình vuông ABCD. Lấy điểm M tùy ý trên cạnh BC. Từ M, vẽ một đường thẳng cắt cạnh CD tại K sao cho: AMB^=AMK^. Chứng minh KAM^=450.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình vuông ABCD. Lấy điểm M tùy ý trên cạnh BC. Từ M, vẽ một đường thẳng cắt cạnh CD tại K sao cho: góc AMB = góc AMK. Chứng minh góc KAM = 45 độ (ảnh 1)

MA là phân giác góc BMK nên MA là trục đối xứng của hai đường thẳng MK và MB.

Gọi I là điểm đối xứng của K qua MA, suy ra I thuộc đường thẳng BC.

Ta có AI=AK , AB=AD .

Hai tam giác vuông ABI và ADK có hai cạnh bằng nhau nên ΔABI = ΔADK.

Từ đó ta có IAB^=KAD^.

IAK^=IAB^+BAK^=KAD^+BAK^=90°.

Vậy ta có: MAK^=12IAK^=45°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình vuông ABCD. Gọi E, F lần lượt trên cạnh AB, AD sao cho AE = DF . Chứng minh rằng DE = CF và DE vuông góc CF  (ảnh 1)

Gọi I là giao điểm của DE và CF.

Xét hai tam giác ADE và DCF có:

AD = DC (vì ABCD là hình vuông).

EAD^=FDC^=90° .

AE = DF (theo giả thiết)

Vậy ΔADE =ΔDCF , khi đó ta có:

DE = CF và ADE^=DCF^ .

Mặt khác DCF^+DFC^=90° , suy ra ADE^+DFC^=90°DIF^=90° .

Vậy DECF .

Lời giải

Cho tứ giác ABCD có góc ADC + góc BCD = 90 độ và  AD = BC . Gọi M, N, P, Q lần lượt là trung điểm của AB, AC, CD, BD. Chứng minh rằng tứ giác MNPQ là hình vuông. (ảnh 1)

Trong tam giác ABC, MN là đường trung bình nên MN=12BC 

Lập luận tương tự, ta có PQ=12BC,MQ=12AD,NP=12AD 

Theo giả thiết, AD = BC suy ra MN=QP=MQ=NP . Vậy MNPQ  là hình thoi (1).

Mặt khác ta có:

DPQ^=DCB^,NPC^=ADC^ (góc đồng vị). theo giả thiết DCB^+ADC^=90° , suy ra DPQ^+NPC^=90° . Do vậy ta được góc QPN^=90°  (2).

Từ (1) và (2) cho ta MNPQ là hình vuông.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay