Câu hỏi:
12/07/2024 5,141
Cho hình chữ nhật ABCD . Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng tứ giác EFGH là hình thoi.
Cho hình chữ nhật ABCD . Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng tứ giác EFGH là hình thoi.
Câu hỏi trong đề: Bài tập Toán 8 Chủ đề 16: Luyện tập hình thoi có đáp án !!
Quảng cáo
Trả lời:

Vì E, F lần lượt là trung điểm của AB, BC nên:
EFlà đường trung bình của . Do đó:
Vì G, H lần lượt là trung điểm của CD, DA nên:
GH là đường trung bình của . Do đó:
Từ (1) và (2) suy ra:
Vậy tứ giác EFGH là hình bình hành
Xét và có:
EA = EB (Giả thiết)
AH = BF (Vì AD = BC)
Suy ra:
=> HE = FE (**)
Từ (*) và (**) ta được tứ giác là hình thoi (đpcm).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Xét tứ giác ABDC có:
AB // CD; AC // BD (gt)
=> tứ giác ABDC là hình bình hành.
Lại có: AB = AC ( cân tại A )
Nên tứ giác ABDC là hình thoi. (đpcm)
Lời giải

Hình bình hành ABCD có M, N lần lượt là trung điểm AB, CD nên:
Do đó tứ giác ANMD là hình bình hành (*)
Ta có: AB = 2.AD (giả thiết)
N là trung điểm AB nên AB = 2.AN
Nên AD = AN
Từ (*) và (**) ta được tứ giác ANMD là hình thoi. (đpcm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.