Câu hỏi:
12/07/2024 772
Cho hình thoi ABCD . Trên các cạnh BC và CD lần lượt lấy hai điểm E và F sao cho BE = DF. Gọi G, H thứ tự là giao điểm của AE, AF với đường chéo BD. Chứng minh rằng tứ giác AGCH là hình thoi.
Cho hình thoi ABCD . Trên các cạnh BC và CD lần lượt lấy hai điểm E và F sao cho BE = DF. Gọi G, H thứ tự là giao điểm của AE, AF với đường chéo BD. Chứng minh rằng tứ giác AGCH là hình thoi.
Câu hỏi trong đề: Bài tập Toán 8 Chủ đề 16: Luyện tập hình thoi có đáp án !!
Quảng cáo
Trả lời:

Gọi O là giao điểm của AC và BD khi đó (Vì O là giao điểm của hai đường chéo của hình thoi)
Xét và có:
AB = AD (Vì ABCD là hình thoi)
(Vì ABCD là hình thoi)
BE = DF (giả thiết)
Suy ra
Suy ra (hai góc tương ứng).
Mà AC là phân giác của
Do đó AO là phân giác của (*)
Xét có:
AO là đường cao, đồng thời là đường phân giác nên cân tại A.
Suy ra HO = OG (1)
Lại có AO = OC ( Vì ABCD là hình thoi có trung điểm O ) (2)
Từ (1) và (2) suy ra AGCH là hình bình hành. (**)
Từ (*) và (**) ta được tứ giác AGCH là hình thoi. (đpcm)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì E, F lần lượt là trung điểm của AB, BC nên:
EFlà đường trung bình của . Do đó:
Vì G, H lần lượt là trung điểm của CD, DA nên:
GH là đường trung bình của . Do đó:
Từ (1) và (2) suy ra:
Vậy tứ giác EFGH là hình bình hành
Xét và có:
EA = EB (Giả thiết)
AH = BF (Vì AD = BC)
Suy ra:
=> HE = FE (**)
Từ (*) và (**) ta được tứ giác là hình thoi (đpcm).
Lời giải

Xét tứ giác ABDC có:
AB // CD; AC // BD (gt)
=> tứ giác ABDC là hình bình hành.
Lại có: AB = AC ( cân tại A )
Nên tứ giác ABDC là hình thoi. (đpcm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.