Câu hỏi:
12/07/2024 1,070Cho tứ giác ABCD có AD = BC. Gọi E, F, M, N lần lượt là trung điểm của AB, DC, DB, AC. Chứng minh tứ giác EFMN là hình thoi.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Vì E, M lần lượt là trung điểm của AB, BD nên:
EM là đường trung bình của .
Do đó:
Vì N, F lần lượt là trung điểm của AC, DC nên:
NF là đường trung bình của ACD . Do đó:
Từ (1), (2) suy ra EMFN là hình bình hành. (*)
Vì E, N lần lượt là trung điểm của AB, AC nên:
EN là đường trung bình của ABC . Do đó:
Mà AD = BC (giả thiết) (4)
Từ (1), (3), (4) ta được: EM = EN (**)
Từ (*) và (**) ta được tứ giác EMFNlà hình thoi. (đpcm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chữ nhật ABCD . Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng tứ giác EFGH là hình thoi.
Câu 2:
Cho tam giác ABC cân tại A . Đường thẳng qua B song song với AC cắt đường thẳng qua C song song với AB tại D. Chứng minh rằng tứ giác ABDC là hình thoi.
Câu 3:
Cho hình bình hành ABCD có AB = 2.AD. Gọi M, N lần lượt là trung điểm cạnh CD, AB. Chứng minh tứ giác ANMD là hình thoi.
Câu 4:
Cho hình thoi ABCD . Trên các cạnh BC và CD lần lượt lấy hai điểm E và F sao cho BE = DF. Gọi G, H thứ tự là giao điểm của AE, AF với đường chéo BD. Chứng minh rằng tứ giác AGCH là hình thoi.
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận