Câu hỏi:

12/07/2024 937

Cho tứ giác ABCD có AD = BC. Gọi E, F, M, N  lần lượt là trung điểm của AB, DC, DB, AC. Chứng minh tứ giác EFMN là hình thoi.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ giác ABCD có AD = BC. Gọi E, F, M, N  lần lượt là trung điểm của AB, DC, DB, AC. Chứng minh tứ giác EFMN là hình thoi. (ảnh 1)

Vì E, M  lần lượt là trung điểm của AB, BD  nên:

EM là đường trung bình của ΔABD .

Do đó: EM//ADEM=12AD   1

Vì N, F  lần lượt là trung điểm của AC, DC  nên:

NF là đường trung bình của ACD . Do đó: NF//ADNF=12AD   2

Từ (1), (2) suy ra EMFN là hình bình hành.  (*)

Vì E, N  lần lượt là trung điểm của AB, AC  nên:

EN là đường trung bình của ABC . Do đó: EN//BCEN=12BC   3

Mà AD = BC  (giả thiết) (4)

Từ (1), (3), (4)  ta được: EM = EN (**)

Từ (*)  và (**)  ta được tứ giác EMFNlà hình thoi. (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chữ nhật ABCD . Gọi E, F, G, H  lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng tứ giác EFGH  là hình thoi.

Xem đáp án » 12/07/2024 3,430

Câu 2:

Cho tam giác ABC  cân tại A . Đường thẳng qua B  song song với AC  cắt đường thẳng qua C song song với AB  tại D. Chứng minh rằng tứ giác ABDC  là hình thoi.

Xem đáp án » 12/07/2024 2,684

Câu 3:

Cho hình bình hành ABCD AB = 2.AD. Gọi M, N lần lượt là trung điểm cạnh CD, AB. Chứng minh tứ giác ANMD là hình thoi.

Xem đáp án » 12/07/2024 1,027

Câu 4:

Cho hình thoi ABCD . Trên các cạnh BC  và CD  lần lượt lấy hai điểm E  và F  sao cho BE = DF. Gọi G, H thứ tự là giao điểm của AE, AF với đường chéo BD. Chứng minh rằng tứ giác AGCH  là hình thoi.

Xem đáp án » 12/07/2024 652

Bình luận


Bình luận