Câu hỏi:

20/10/2022 749

b) Trên đường trung trực Mx của đoạn thẳng BC, lấy điểm D sao cho MD = MA (D và A thuộc hai nửa mặt phẳng đối nhau bờ BC). Chứng minh rằng AD là phân giác chung của MAH^&CAB^. 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) A1^=C1^ (1) (chứng minh a)

ABC vuông có AM là trung tuyến nên AMC cân tại M => C1^=A4^(2).

Từ (1) và (2) suy ra A1^=A4^(3)

D thuộc đường trung trực của BC.

=> DMBC = {M}

=> D1^=A2^

Vì DM = MA (giả thiết) M1^=A3^A2^=A3^  (4)

Từ (3) và (4) => AD là phân giác chung của MAH^&CAB^

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c) Nếu AEMF là hình vuông thì AM là đường phân giác của BAC^ mà AM là đường trung tuyến.

=> ABC vuông cân tại A.

Lời giải

b) Áp dụng tính chất đối xứng trục ta có:

AH=AM,A1^=A2^ và AK=AM,A3^=A4^.

A2^+A3^ = 90o => H, A, K thẳng hàng.

Lại có AH = AM = AK =? H đối xứng với K qua A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP