Câu hỏi:

24/10/2022 1,629

Cho D ABC vuông tại A . Từ một điểm I nằm trong tam giác ta kẻ IM ^ BC, IN ^ AC , IK ^AB . Tìm vị trí của I sao cho tổng IM2 +IN2 +IK2 nhỏ nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Kẻ AH ^BC , IE ^AH

ANIK ,IMHE là các hình chữ nhật.

IK2+ IN2 = IK2 +AK2 = AI2 ≥ AE2

IM = EH

nên IK2+ IN2 + IM2 = AI2 +EH2 ≥ AE2+EH2

Đặt AE = x , EH =y ta có :

Þ IK2+ IN2 + IM2  .  

Dấu “=” xảy ra khi I là trung điểm của đường cao AH.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Đặt CM = m , CN = n , MN = x

m + n + x = 2CD = 2a và m2 +n2 = x2

Do đó : x2= m2 +n2

2x2 ≥ ( 2a - x)2 Þ  ≥ 2a - x

   x ≥  

   min MN =2a  Û m = n . Khi đó tiếp tuyến MN // BD , AM là tia phân giác của

   AN là phân giác của

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP