Câu hỏi:
13/07/2024 16,424
Cho tam giác ABC với các cạnh AB=c, BC=a, CA=b. Gọi I là tâm đường tròn nội tiếp tam giác ABC. Chứng minh rằng
Cho tam giác ABC với các cạnh AB=c, BC=a, CA=b. Gọi I là tâm đường tròn nội tiếp tam giác ABC. Chứng minh rằng
Quảng cáo
Trả lời:
Cách 1:
(Hình 1.19)Gọi D là chân đường phân giác góc A
Do D là đường phân giác giác trong góc A nên ta có
Do I là chân đường phân giác nên ta có :
Từ (1) và (2) ta có điều phải chứng minh
Cách 2:
(hình 1.20)Qua C dựng đường thẳng song song với AI cắt BI tai B’;song song với BI cắt AI tại A’
Ta có (*)
Theo định lý Talet và tính chất đường phân giác trong ta có :
Tương tự :
Từ (1) và (2) thay vào (*) ta có :
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi O là tâm hình vuông.
Theo quy tắc ba điểm ta có
Mà nên
Suy ra không phụ thuộc vào vị trí điểm M
Lời giải
Vì là trọng tâm tam giác nên
Tương tự lần lượt là trọng tâm tam giác suy ra
và
Công theo vế với vế các đẳng thức trên ta có
Mặt khác hai tam giác ABC và có cùng trọng tâm G nên
và
Suy ra
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.