Cho hàm số xác định, liên tục trên và có bảng biến thiên sau:

Khẳng định nào sau đây là đúng?
Cho hàm số xác định, liên tục trên và có bảng biến thiên sau:
Khẳng định nào sau đây là đúng?
A. Hàm số có ba giá trị cực trị.
B. Hàm số có ba điểm cực trị.
C. Hàm số có hai điểm cực trị.
Quảng cáo
Trả lời:
Dựa vào đồ thị hàm số, ta có các nhận xét sau:
= Hàm số có ba điểm cực trị, gồm các điểm vì đạo hàm đổi dấu đi qua các điểm đó.
= Hàm số đạt cực đại tại , đạt cực tiểu tại
(đáp án A sai vì hàm số chỉ có hai giá trị cực trị là và . Nói đến đồ thị hàm số thì khi đó mới có ba điểm cực trị là )
Chọn B.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Có hai điểm cực trị.
B. Có một điểm cực trị.
Lời giải
Hàm số xác định trên và có đạo hàm
Ta có đổi dấu khi qua .
Vậy là điểm cực tiểu của hàm số.
Chọn B.
Câu 2
A. 2.
B. 3.
C. 4.
Lời giải
Chọn D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. m=0
B. m=1
C. m=2
D. m=3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Nếu đồng biến trên thì hàm số không có cực trị trên .
B. Nếu nghịch biến trên thì hàm số không có cực trị trên .
C. Nếu đạt cực trị tại điểm thì tiếp tuyến của đồ thị hàm số tại điểm song song hoặc trùng với trục hoành.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.