Cho hàm số xác định và liên tục trên , có bảng biến thiên như sau:
Khẳng định nào sau đây là đúng?
Khẳng định nào sau đây là đúng?
A. Hàm số đã cho có một điểm cực tiểu và không có điểm cực đại.
B. Hàm số đã cho không có cực trị.
C. Hàm số đã cho có một điểm cực đại và một điểm cực tiểu.
Quảng cáo
Trả lời:

Dựa vào bảng biến thiên, ta thấy
= đổi dấu từ sang khi đi qua điểm nhưng tại hàm số không xác định nên không phải là điểm cực đại.
= đổi dấu từ sang khi đi qua điểm suy ra là điểm cực tiểu của hàm số.
Chọn A.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Có hai điểm cực trị.
B. Có một điểm cực trị.
Lời giải
Hàm số xác định trên và có đạo hàm
Ta có đổi dấu khi qua .
Vậy là điểm cực tiểu của hàm số.
Chọn B.
Câu 2
A. 2.
B. 3.
C. 4.
Lời giải
Chọn D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. m=0
B. m=1
C. m=2
D. m=3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Nếu đồng biến trên thì hàm số không có cực trị trên .
B. Nếu nghịch biến trên thì hàm số không có cực trị trên .
C. Nếu đạt cực trị tại điểm thì tiếp tuyến của đồ thị hàm số tại điểm song song hoặc trùng với trục hoành.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.