Câu hỏi:
30/10/2023 515Những điều kiện nào dưới đây kéo theo hai tam giác vuông đồng dạng.
(1) Một góc nhọn của tam giác này bằng một góc nhọn của tam giác kia.
(2) Một cạnh góc vuông của tam giác này bằng một cạnh góc vuông của tam giác kia.
(3) Hai cạnh góc vuông của tam giác này tỉ lệ với hai cạnh góc vuông của tam giác kia.
(4) Một góc nhọn của tam giác này phụ với một góc nhọn của tam giác kia.
(5) Một cạnh huyền của tam giác này bằng một cạnh huyền của tam giác kia.
(6) Một cạnh góc vuông và cạnh huyền của tam giác này tỉ lệ với một cạnh góc vuông và cạnh huyền của tam giác kia.
Quảng cáo
Trả lời:
Lời giải
Các điều kiện (1), (3), (4), (6) kéo theo hai tam giác vuông đồng dạng.
Giải thích: Các điều kiện (1), (3), (6) là theo các trường hợp bằng nhau của hai tam giác vuông. Điều kiện (4) suy ra một góc nhọn của tam giác này bằng một góc nhọn của tam giác kia (do cùng có tổng với góc nhọn còn lại bằng 90°), vậy quay trở về giống với điều kiện (1).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a)
Vì AD, BE, CF là các đường cao của tam giác ABC nên AD vuông góc với BC, BE vuông góc với AC, CF vuông góc với AB.
Tam giác AHE vuông ở H và tam giác BHD vuông ở D có:
\(\widehat {AHE} = \widehat {BHD}\) (hai góc đối đỉnh)
Do đó, ∆AHE ᔕ ∆BHD (góc nhọn).
Suy ra \(\frac{{AH}}{{BH}} = \frac{{HE}}{{HD}}\) nên HA . HD = HB . HE (1).
Tam giác HBF vuông ở F và tam giác HCE vuông ở E có:
\(\widehat {BHF} = \widehat {EHC}\) (hai góc đối đỉnh)
Do đó, ∆HBF ᔕ ∆HCE (góc nhọn).
Suy ra \(\frac{{HB}}{{HC}} = \frac{{HF}}{{HE}}\) nên HB . HE = HC . HF (2).
Từ (1) và (2) ta có: HA . HD = HB . HE = HC . HF.
b)
Tam giác AFC vuông ở F và tam giác AEB vuông ở E có:
\(\widehat {BAC}\) chung.
Do đó, ∆AFC ᔕ ∆AEB (góc nhọn)
Suy ra \(\frac{{AF}}{{AE}} = \frac{{AC}}{{AB}}\) nên AF . AB = AE . AC.
c)
Vì HA . HD = HB . HE nên \(\frac{{HA}}{{HE}} = \frac{{HB}}{{HD}}\)
Tam giác HAB và tam giác HED có:
\(\frac{{HA}}{{HE}} = \frac{{HB}}{{HD}}\) (cmt)
\(\widehat {AHB} = \widehat {EHD}\) (hai góc đối đỉnh)
Do đó, ∆AHB ᔕ ∆EHD (c.g.c).
Suy ra \(\widehat {HAB} = \widehat {HED}\).
Mà \(\widehat {HAB} + \widehat {FBD} = \widehat {HED} + \widehat {DEC}\) (= \(90^\circ \)).
Do đó, \(\widehat {FBD} = \widehat {DEC}\).
Chứng minh tương tự ta có: \(\widehat {BFD} = \widehat {ECD}\).
Tam giác BDF và tam giác EDC có:
\(\widehat {FBD} = \widehat {DEC}\) (cmt)
\(\widehat {BFD} = \widehat {ECD}\) (cmt)
Do đó, ∆BDF ᔕ ∆EDC (g.g).
Suy ra: \(\widehat {BDF} = \widehat {EDC}\).
Mà \[\widehat {BDF} + \widehat {FDH} = \widehat {EDC} + \widehat {HDE}\left( { = 90^\circ } \right)\].
Do đó, \(\widehat {FDH} = \widehat {HDE}\) hay \(\widehat {FDA} = \widehat {ADE}\).
Vậy DA là tia phân giác của góc EDF.
Lời giải
Lời giải
Áp dụng định lý Pythagore vào tam giác ABC vuông tại A ta có:
BC2 = AB2 + AC2 = 62 + 82 = 100
Nên BC = 10 cm.
Vì AH là đường cao trong tam giác ABC nên AH vuông góc với BC.
Tam giác ABC vuông tại A và tam giác HAC vuông tại H có:
\(\widehat C\) chung
Do đó, ∆ABC ᔕ ∆HAC (góc nhọn).
Suy ra \(\frac{{AC}}{{HC}} = \frac{{BC}}{{AC}}\) nên CH = \(\frac{{C{A^2}}}{{CB}} = \frac{{{8^2}}}{{10}} = \frac{{32}}{5} = 6,4\) (cm).
Do đó, BH = BC – CH = 10 – 6,4 = 3,6 (cm).
Vì ∆ABC ᔕ ∆HAC (cmt) nên \(\frac{{AB}}{{HA}} = \frac{{BC}}{{AC}}\).
Do đó, AH = \(\frac{{AB \cdot AC}}{{BC}} = \frac{{6 \cdot 8}}{{10}} = 4,8\) (cm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 24
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 1
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận