Câu hỏi:
11/07/2024 553Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Tam giác ABD vuông ở A và tam giác DCB vuông ở D (do \(\widehat {BAD} = \widehat {BDC} = 90^\circ \)) có:
\(\frac{{AD}}{{BD}} = \frac{{BD}}{{BC}}\,\,\left( {\frac{4}{6} = \frac{6}{9}} \right)\)
Do đó, ∆ABD ᔕ ∆DCB (ch – cgv).
Suy ra \(\widehat {BDA} = \widehat {DBC}\).
Mà hai góc này ở vị trí so le trong nên BC // AD.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác nhọn ABC có các đường cao AD, BE, CF cắt nhau ở H. Chứng minh rằng:
a) HA . HD = HB . HE = HC . HF;
b) ∆AFC ᔕ ∆AEB và AF . AB = AE . AC;
c) ∆BDF ᔕ ∆EDC và DA là tia phân giác của góc EDF.
Câu 2:
Câu 3:
Cho tam giác ABC vuông tại A có đường cao AH. Từ H kẻ đường thẳng HE vuông góc với AB (E thuộc AB). Chứng minh rằng:
a) ∆ABC ᔕ ∆HAC và CA2 = CH . CB.
b) \(\frac{{AH}}{{BC}} = \frac{{HE}}{{AB}}\).
Câu 4:
Cho tam giác nhọn ABC có các đường cao AD, BE, CF. Chứng minh rằng:
a) ∆BDF ᔕ ∆BAC và ∆CDE ᔕ ∆CAB;
b) BF . BA + CE . CA = BC2.
Câu 5:
Cho hình vuông ABCD và M, N lần lượt là trung điểm của AB, BC. Gọi O là giao điểm của CM và DN.
a) Chứng minh rằng CM ⊥ DN.
b) Biết AB = 4 cm, hãy tính diện tích tam giác ONC.
Câu 6:
Cho tam giác ABC vuông tại A có đường cao AH. Cho M là một điểm nằm trên cạnh BC (M nằm giữa C và H). Kẻ đường thẳng qua M vuông góc với BC lần lượt cắt AC và tia đối của tia AB tại N và P. Chứng minh rằng:
a) ∆ANP ᔕ ∆HBA và ∆MCN ᔕ ∆MPB;
b) \(\frac{{MB}}{{MC}} \cdot \frac{{NC}}{{NA}} \cdot \frac{{PA}}{{PB}} = 1\).
Câu 7:
về câu hỏi!