Câu hỏi:

11/07/2024 603

Cho ABC và A'B'C' lần lượt là các tam giác vuông tại đỉnh A và A'. Gọi M, M' lần lượt là trung điểm của AC và A'C'. Chứng minh rằng:

a) BC2 + 3BA2 = 4BM2 và B'C'2 + 3B'A'2 = 4B'M'2;

b) Nếu \(\frac{{BC}}{{BM}} = \frac{{B'C'}}{{B'M'}}\) thì ∆ABC ∆A'B'C'.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Vì M là trung điểm của AC nên AC = 2AM. Suy ra AC2 = (2AM)2 = 4AM2.

Áp dụng định lý Pythagore cho tam giác ABC vuông tại A có:

BC2 = AB2 + AC2.

Áp dụng định lý Pythagore cho tam giác ABM vuông tại A có:

BM2 = AB2 + AM2.

Do đó, 4BM2 = 4(AB2 + AM2) = 4AB2 + 4AM2 = 4AB2 + AC2

= 3AB2 + (AB2 + AC2) = 3AB2 + BC2.

Vậy BC2 + 3BA2 = 4BM2.

Vì M' là trung điểm của A'C' nên A'C' = 2A'M'. Suy ra A'C'2 = (2A'M')2 = 4A'M'2.

Áp dụng định lí Pythagore cho tam giác A'B'C' vuông tại A' có:

B'C'2 = A'B'2 + A'C'2.

Áp dụng định lý Pythagore cho tam giác A'B'M' vuông tại A' có:

B'M'2 = A'B'2 + A'M'2.

Do đó, 4B'M'2 = 4(A'B'2 + A'M'2) = 4A'B'2 + 4A'M'2  = 4A'B'2 + A'C'2

= 3A'B'2 + (A'B'2 + A'C'2) = 3A'B'2 + B'C'2.

Vậy B'C'2 + 3B'A'2 = 4B'M'2.

b) Giả sử \(\frac{{BC}}{{BM}} = \frac{{B'C'}}{{B'M'}}\). Suy ra \(\frac{{B{C^2}}}{{B{M^2}}} = \frac{{B'C{'^2}}}{{B'M{'^2}}}\) (1).

Theo phần a ta có: BC2 + 3BA2 = 4BM2, chia cả 2 vế cho BM2, ta được:

\(\frac{{B{C^2}}}{{B{M^2}}} + 3\frac{{B{A^2}}}{{B{M^2}}} = 4\).

Tương tự, ta có \(\frac{{B'C{'^2}}}{{B'M{'^2}}} + 3\frac{{B'A{'^2}}}{{B'M{'^2}}} = 4\).

Do đó, \(\frac{{B{C^2}}}{{B{M^2}}} + 3\frac{{B{A^2}}}{{B{M^2}}} = \frac{{B'C{'^2}}}{{B'M{'^2}}} + 3\frac{{B'A{'^2}}}{{B'M{'^2}}}\left( { = 4} \right)\)      (2).

Từ (1) và (2), suy ra: \(\frac{{B{A^2}}}{{B{M^2}}} = \frac{{B'A{'^2}}}{{B'M{'^2}}}\) hay \(\frac{{BA}}{{BM}} = \frac{{B'A'}}{{B'M'}}\).

Do đó, \(\frac{{BC}}{{B'C'}} = \frac{{BM}}{{B'M'}} = \frac{{BA}}{{B'A'}}\).

Hai tam giác ABC vuông tại A và A'B'C' vuông tại A' có \(\frac{{BC}}{{B'C'}} = \frac{{BA}}{{B'A'}}\).

Vậy ∆ABC ∆A'B'C' (ch – cgv).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác nhọn ABC có các đường cao AD, BE, CF cắt nhau ở H. Chứng minh rằng:

a) HA . HD = HB . HE = HC . HF;

b) ∆AFC ∆AEB và AF . AB = AE . AC;

c) ∆BDF ∆EDC và DA là tia phân giác của góc EDF.

Xem đáp án » 11/07/2024 41,363

Câu 2:

Cho tam giác ABC vuông tại A có đường cao AH. Từ H kẻ đường thẳng HE vuông góc với AB (E thuộc AB). Chứng minh rằng:

a) ∆ABC ∆HAC và CA2 = CH . CB.

b) \(\frac{{AH}}{{BC}} = \frac{{HE}}{{AB}}\).

Xem đáp án » 11/07/2024 10,033

Câu 3:

Cho tam giác ABC vuông tại A có đường cao AH. Biết rằng AB = 6 cm và AC = 8 cm, hãy tính độ dài các đoạn thẳng BC, AH, BH, CH.

Xem đáp án » 11/07/2024 9,912

Câu 4:

Cho tam giác nhọn ABC có các đường cao AD, BE, CF. Chứng minh rằng:

a) ∆BDF ∆BAC và ∆CDE ∆CAB;

b) BF . BA + CE . CA = BC2.

Xem đáp án » 11/07/2024 4,732

Câu 5:

Cho hình vuông ABCD và M, N lần lượt là trung điểm của AB, BC. Gọi O là giao điểm của CM và DN.

a) Chứng minh rằng CM DN.

b) Biết AB = 4 cm, hãy tính diện tích tam giác ONC.

Xem đáp án » 11/07/2024 3,688

Câu 6:

Cho tam giác ABC vuông tại A có đường cao AH. Cho M là một điểm nằm trên cạnh BC (M nằm giữa C và H). Kẻ đường thẳng qua M vuông góc với BC lần lượt cắt AC và tia đối của tia AB tại N và P. Chứng minh rằng:

a) ∆ANP ∆HBA và ∆MCN ∆MPB;

b) \(\frac{{MB}}{{MC}} \cdot \frac{{NC}}{{NA}} \cdot \frac{{PA}}{{PB}} = 1\).

Xem đáp án » 11/07/2024 2,277

Câu 7:

Cho tam giác ABC vuông tại A có đường cao AH. Gọi M, N lần lượt là chân đường vuông góc kẻ từ H xuống AB và AC. Chứng minh rằng:

a) AM . AB = AH2 và AM . AB = AN . AC.

b) ∆AMN ∆ACB.

Xem đáp án » 30/10/2023 1,398

Bình luận


Bình luận