Câu hỏi:
11/07/2024 660Cho ABC và A'B'C' lần lượt là các tam giác vuông tại đỉnh A và A'. Gọi M, M' lần lượt là trung điểm của AC và A'C'. Chứng minh rằng:
a) BC2 + 3BA2 = 4BM2 và B'C'2 + 3B'A'2 = 4B'M'2;
b) Nếu \(\frac{{BC}}{{BM}} = \frac{{B'C'}}{{B'M'}}\) thì ∆ABC ᔕ ∆A'B'C'.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Lời giải
a) Vì M là trung điểm của AC nên AC = 2AM. Suy ra AC2 = (2AM)2 = 4AM2.
Áp dụng định lý Pythagore cho tam giác ABC vuông tại A có:
BC2 = AB2 + AC2.
Áp dụng định lý Pythagore cho tam giác ABM vuông tại A có:
BM2 = AB2 + AM2.
Do đó, 4BM2 = 4(AB2 + AM2) = 4AB2 + 4AM2 = 4AB2 + AC2
= 3AB2 + (AB2 + AC2) = 3AB2 + BC2.
Vậy BC2 + 3BA2 = 4BM2.
Vì M' là trung điểm của A'C' nên A'C' = 2A'M'. Suy ra A'C'2 = (2A'M')2 = 4A'M'2.
Áp dụng định lí Pythagore cho tam giác A'B'C' vuông tại A' có:
B'C'2 = A'B'2 + A'C'2.
Áp dụng định lý Pythagore cho tam giác A'B'M' vuông tại A' có:
B'M'2 = A'B'2 + A'M'2.
Do đó, 4B'M'2 = 4(A'B'2 + A'M'2) = 4A'B'2 + 4A'M'2 = 4A'B'2 + A'C'2
= 3A'B'2 + (A'B'2 + A'C'2) = 3A'B'2 + B'C'2.
Vậy B'C'2 + 3B'A'2 = 4B'M'2.
b) Giả sử \(\frac{{BC}}{{BM}} = \frac{{B'C'}}{{B'M'}}\). Suy ra \(\frac{{B{C^2}}}{{B{M^2}}} = \frac{{B'C{'^2}}}{{B'M{'^2}}}\) (1).
Theo phần a ta có: BC2 + 3BA2 = 4BM2, chia cả 2 vế cho BM2, ta được:
\(\frac{{B{C^2}}}{{B{M^2}}} + 3\frac{{B{A^2}}}{{B{M^2}}} = 4\).
Tương tự, ta có \(\frac{{B'C{'^2}}}{{B'M{'^2}}} + 3\frac{{B'A{'^2}}}{{B'M{'^2}}} = 4\).
Do đó, \(\frac{{B{C^2}}}{{B{M^2}}} + 3\frac{{B{A^2}}}{{B{M^2}}} = \frac{{B'C{'^2}}}{{B'M{'^2}}} + 3\frac{{B'A{'^2}}}{{B'M{'^2}}}\left( { = 4} \right)\) (2).
Từ (1) và (2), suy ra: \(\frac{{B{A^2}}}{{B{M^2}}} = \frac{{B'A{'^2}}}{{B'M{'^2}}}\) hay \(\frac{{BA}}{{BM}} = \frac{{B'A'}}{{B'M'}}\).
Do đó, \(\frac{{BC}}{{B'C'}} = \frac{{BM}}{{B'M'}} = \frac{{BA}}{{B'A'}}\).
Hai tam giác ABC vuông tại A và A'B'C' vuông tại A' có \(\frac{{BC}}{{B'C'}} = \frac{{BA}}{{B'A'}}\).
Vậy ∆ABC ᔕ ∆A'B'C' (ch – cgv).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác nhọn ABC có các đường cao AD, BE, CF cắt nhau ở H. Chứng minh rằng:
a) HA . HD = HB . HE = HC . HF;
b) ∆AFC ᔕ ∆AEB và AF . AB = AE . AC;
c) ∆BDF ᔕ ∆EDC và DA là tia phân giác của góc EDF.
Câu 2:
Câu 3:
Cho tam giác ABC vuông tại A có đường cao AH. Từ H kẻ đường thẳng HE vuông góc với AB (E thuộc AB). Chứng minh rằng:
a) ∆ABC ᔕ ∆HAC và CA2 = CH . CB.
b) \(\frac{{AH}}{{BC}} = \frac{{HE}}{{AB}}\).
Câu 4:
Cho tam giác nhọn ABC có các đường cao AD, BE, CF. Chứng minh rằng:
a) ∆BDF ᔕ ∆BAC và ∆CDE ᔕ ∆CAB;
b) BF . BA + CE . CA = BC2.
Câu 5:
Cho hình vuông ABCD và M, N lần lượt là trung điểm của AB, BC. Gọi O là giao điểm của CM và DN.
a) Chứng minh rằng CM ⊥ DN.
b) Biết AB = 4 cm, hãy tính diện tích tam giác ONC.
Câu 6:
Cho tam giác ABC vuông tại A có đường cao AH. Cho M là một điểm nằm trên cạnh BC (M nằm giữa C và H). Kẻ đường thẳng qua M vuông góc với BC lần lượt cắt AC và tia đối của tia AB tại N và P. Chứng minh rằng:
a) ∆ANP ᔕ ∆HBA và ∆MCN ᔕ ∆MPB;
b) \(\frac{{MB}}{{MC}} \cdot \frac{{NC}}{{NA}} \cdot \frac{{PA}}{{PB}} = 1\).
Câu 7:
Cho tam giác ABC vuông tại A có đường cao AH. Gọi M, N lần lượt là chân đường vuông góc kẻ từ H xuống AB và AC. Chứng minh rằng:
a) AM . AB = AH2 và AM . AB = AN . AC.
b) ∆AMN ᔕ ∆ACB.
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích, diện tích xung quanh của hình chóp tứ giác đều (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
10 Bài tập Nhận biết hai hình đồng dạng, hai hình đồng dạng phối cảnh (có lời giải)
10 Bài tập Ứng dụng của xác suất thực nghiệm trong một số bài toán đơn giản (có lời giải)
Cách tìm mẫu thức chung cực hay, nhanh nhất
về câu hỏi!