Câu hỏi:

19/08/2025 25 Lưu

Cho hình thang ABCD có hai đáy là AB và CD. Hai đường chéo AC và BD cắt nhau tại điểm E. Hãy nêu tên các cặp hình tam giác có diện tích bằng nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hãy nêu tên các cặp hình tam giác có diện tích bằng nhau. (ảnh 1)

Ta có:

\({S_{ACD}} = {S_{BCD}}\) (chung đáy CD và chiều cao tương ứng bằng chiều cao hình thang ABCD)

\({S_{DAB}} = {S_{CAB}}\) (chung đáy AB và chiều cao tương ứng bằng chiều cao hình thang ABCD)

Lại có: \({S_{ACD}} = {S_{EAD}} + {S_{ECD}}\)\({S_{BCD}} = {S_{EBC}} + {S_{ECD}}\). Suy ra: \({S_{EAD}} = {S_{EBC}}\).

Vậy các cặp tam giác bằng nhau là: \({S_{ACD}} = {S_{BCD}}\); \({S_{DAB}} = {S_{CAB}}\); \({S_{EAD}} = {S_{EBC}}\)

Đáp Số: \({S_{ACD}} = {S_{BCD}}\); \({S_{DAB}} = {S_{CAB}}\); \({S_{EAD}} = {S_{EBC}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tính diện tích các tam giác MAB, MBC, MCD biết rằng AD = 20cm; BC = 10cm và đường cao của hình thang bằng 12cm. (ảnh 1)

Ta có:

\({S_{ABC}} = {S_{DBC}} = 10 \times 12:2 = 60{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\)

\({S_{ABD}} = {S_{ACD}} = 20 \times 12:2 = 120{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\) (1)

Từ (1) Suy ra: \({S_{MAB}} = {S_{MCD}}\).

Vì hai tam giác ABD và CBD có chung đáy BD mà \({S_{CBD}} = \frac{1}{2}{S_{ABD}}\). Suy ra, đường cao hạ từ A tới BD gấp 2 lần đường cao hạ từ C tới BD. (2)

Xét hai tam giác MDA và MCD có chung đáy DM và do (2) suy ra:

\({S_{MCD}} = \frac{1}{2}{S_{MDA}} = \frac{1}{3}{S_{ACD}} = 120:3 = 40{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\).

Vậy \({S_{MDA}} = 120 - 40 = 80{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\); \({S_{MBC}} = 60 - 40 = 20{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\)

Đáp Số: \({S_{MCD}} = 40{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\).               \({S_{MDA}} = 80{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\);           \({S_{MBC}} = 20{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\)

Lời giải

Tính diện tích hình thang ABCD. (ảnh 1)

Cắt hình tam giác ABM rồi ghép hình được tam giác ADE.

Do đó: \({S_{ABCD}} = {S_{ADE}} = {S_{AMD}} + {S_{MDE}}\).

Có: \({S_{AMD}} = {S_{MDE}}\) (vì AM = ME và chung chiều cao hạ từ D xuống AE)

Do đó: \({S_{MDE}} = 12,5(c{m^2})\)

Vậy \({S_{ABCD}} = 12,5 + 12,5 = 25(c{m^2})\)

Đáp Số: 25 \(c{m^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP