Cho hình thang ABCD (đáy AD, BC) hai đường chéo AC, BD cắt nhau tại điểm M. Tính diện tích các tam giác MAB, MBC, MCD biết rằng AD = 20cm; BC = 10cm và đường cao của hình thang bằng 12cm.
Cho hình thang ABCD (đáy AD, BC) hai đường chéo AC, BD cắt nhau tại điểm M. Tính diện tích các tam giác MAB, MBC, MCD biết rằng AD = 20cm; BC = 10cm và đường cao của hình thang bằng 12cm.
Câu hỏi trong đề: 11 bài tập Hình thang có lời giải !!
Quảng cáo
Trả lời:
Ta có:
\({S_{ABC}} = {S_{DBC}} = 10 \times 12:2 = 60{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\)
\({S_{ABD}} = {S_{ACD}} = 20 \times 12:2 = 120{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\) (1)
Từ (1) Suy ra: \({S_{MAB}} = {S_{MCD}}\).
Vì hai tam giác ABD và CBD có chung đáy BD mà \({S_{CBD}} = \frac{1}{2}{S_{ABD}}\). Suy ra, đường cao hạ từ A tới BD gấp 2 lần đường cao hạ từ C tới BD. (2)
Xét hai tam giác MDA và MCD có chung đáy DM và do (2) suy ra:
\({S_{MCD}} = \frac{1}{2}{S_{MDA}} = \frac{1}{3}{S_{ACD}} = 120:3 = 40{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\).
Vậy \({S_{MDA}} = 120 - 40 = 80{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\); \({S_{MBC}} = 60 - 40 = 20{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\)
Đáp Số: \({S_{MCD}} = 40{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\). \({S_{MDA}} = 80{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\); \({S_{MBC}} = 20{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \({S_{MAD}} = {S_{MED}}\) (Chung chiều cao hạ từ M xuống AB và AD = DE)
\({S_{EMN}} = {S_{ECN}}\) (chung chiều cao hạ từ E xuống AC và MN = CN)
Do đó: \({S_{MAD}} + {S_{ECN}} = {S_{MED}} + {S_{EMN}} = {S_{DMNE}}\) (1)
Lại có: \({S_{ACE}} = {S_{MAD}} + {S_{ECN}} + {S_{MED}} + {S_{EMN}}\) (2)
Từ (1) và (2) có: \({S_{DMNE}} = \frac{1}{2} \times {S_{ACE}}\) (3)
Cũng có: \({S_{ACE}} = \frac{2}{3} \times {S_{ABC}}\) (chung chiều cao hạ từ C xuống AB và \(AE = \frac{2}{3} \times AB\)) \( \to {S_{ABC}} = \frac{3}{2} \times {S_{ACE}}\) (4)
Từ (3) và (4) có: \({S_{DMNE}} = \frac{1}{2} \times \frac{3}{2} \times {S_{ABC}} = \frac{3}{4} \times {S_{ABC}} \to {S_{ABC}} = \frac{4}{3} \times {S_{DMNE}}\)
Do đó: \({S_{ABC}} = \frac{4}{3} \times 12 = 16(c{m^2})\)
Đáp Số: 16 \(c{m^2}\).
Lời giải
a) Ta có: \({S_{AMCD}} = \frac{{(AM + CD) \times AD}}{2}\) và \({S_{NBCD}} = \frac{{(BN + CD) \times BC}}{2}\)
Mà AM = BN và AD = BC nên \({S_{AMCD}} = {S_{NBCD}} \to \frac{{{S_{AMCD}}}}{{{S_{NBCD}}}} = 1\).
b) Theo đề bài ta có: \(AM = \frac{1}{3} \times AB\)
\( \to {S_{AMCD}} = \frac{{(AM + CD) \times AD}}{2} = \frac{{\left( {\frac{1}{3} \times AB + AB} \right) \times AD}}{2} = \frac{2}{3} \times AB \times AD = \frac{2}{3} \times {S_{ABCD}}\)
Vậy \(\frac{{{S_{AMCD}}}}{{{S_{ABCD}}}} = \frac{2}{3}\)
Đáp Số: a) 1 b) \(\frac{2}{3}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.