Câu hỏi:

02/08/2025 7 Lưu

Cho hình thang ABCD có diện tích 108\(c{m^2}\). Trên cạnh bên AD lấy hai điểm M và N sao cho AM = MN = ND. Trên cạnh bên BC lấy hai điểm E và G sao cho BE = EG = GC. Nối M với E và nối N với G được hình tứ giác MEGN. Tính diện tích hình tứ giác MEGN.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Nối A với E; Nối A với C; Nối E với N; Nối N với C.

Tính diện tích hình tứ giác MEGN. (ảnh 1) 

Ta có:

\({S_{ABE}} = \frac{1}{3} \times {S_{ABC}}\) (chung chiều cao hạ từ A xuống BC và \(BE = \frac{1}{3} \times BC\))

\({S_{CDN}} = \frac{1}{3} \times {S_{ACD}}\) (chung chiều cao hạ từ C xuống DC và \(ND = \frac{1}{3} \times AD\))

Lại có: \({S_{ABC}} + {S_{ACD}} = {S_{ABCD}}\). Suy ra: \({S_{ABE}} + {S_{CDN}} = \frac{1}{3} \times {S_{ABCD}}\).

Cũng có: \({S_{ABE}} + {S_{AEM}} + {S_{EMN}} + {S_{EGN}} + {S_{CGN}} + {S_{CDN}} = {S_{ABCD}}\).

Suy ra: \({S_{AEM}} + {S_{EMN}} + {S_{EGN}} + {S_{CGN}} = \frac{2}{3} \times {S_{ABCD}}\). (1)

Mặt khác có:

\({S_{AEM}} = {S_{EMN}}\) (chung chiều cao hạ từ E xuống AD và AM = MN)

\({S_{EGN}} = {S_{CGN}}\) (chung chiều cao hạ từ N xuống BC và EG = GC)

Do đó: \({S_{AEM}} + {S_{CGN}} = {S_{EMN}} + {S_{EGN}}\) (2)

Từ (1) và (2) có: \({S_{EMN}} + {S_{EGN}} = \frac{1}{3} \times {S_{ABCD}}\)

Hay \({S_{MEGN}} = \frac{1}{3} \times {S_{ABCD}} = \frac{1}{3} \times 108 = 36(c{m^2})\)

Đáp Số: 36 (\(c{m^2}\))

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tính diện tích tam giác ABC. (ảnh 1)

Ta có: \({S_{MAD}} = {S_{MED}}\) (Chung chiều cao hạ từ M xuống AB và AD = DE)

\({S_{EMN}} = {S_{ECN}}\) (chung chiều cao hạ từ E xuống AC và MN = CN)

Do đó: \({S_{MAD}} + {S_{ECN}} = {S_{MED}} + {S_{EMN}} = {S_{DMNE}}\) (1)

Lại có: \({S_{ACE}} = {S_{MAD}} + {S_{ECN}} + {S_{MED}} + {S_{EMN}}\) (2)

Từ (1) và (2) có: \({S_{DMNE}} = \frac{1}{2} \times {S_{ACE}}\) (3)

Cũng có: \({S_{ACE}} = \frac{2}{3} \times {S_{ABC}}\) (chung chiều cao hạ từ C xuống AB và \(AE = \frac{2}{3} \times AB\)) \( \to {S_{ABC}} = \frac{3}{2} \times {S_{ACE}}\) (4)

Từ (3) và (4) có: \({S_{DMNE}} = \frac{1}{2} \times \frac{3}{2} \times {S_{ABC}} = \frac{3}{4} \times {S_{ABC}} \to {S_{ABC}} = \frac{4}{3} \times {S_{DMNE}}\)

Do đó: \({S_{ABC}} = \frac{4}{3} \times 12 = 16(c{m^2})\)

Đáp Số: 16 \(c{m^2}\).

Lời giải

cv (ảnh 1)

a) Ta có: \({S_{AMCD}} = \frac{{(AM + CD) \times AD}}{2}\)\({S_{NBCD}} = \frac{{(BN + CD) \times BC}}{2}\)

Mà AM = BN và AD = BC nên \({S_{AMCD}} = {S_{NBCD}} \to \frac{{{S_{AMCD}}}}{{{S_{NBCD}}}} = 1\).

b) Theo đề bài ta có: \(AM = \frac{1}{3} \times AB\)

\( \to {S_{AMCD}} = \frac{{(AM + CD) \times AD}}{2} = \frac{{\left( {\frac{1}{3} \times AB + AB} \right) \times AD}}{2} = \frac{2}{3} \times AB \times AD = \frac{2}{3} \times {S_{ABCD}}\)

Vậy \(\frac{{{S_{AMCD}}}}{{{S_{ABCD}}}} = \frac{2}{3}\)

Đáp Số: a) 1                    b) \(\frac{2}{3}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP