Câu hỏi:

19/08/2025 32 Lưu

Cho hình thang ABCD có diện tích 108\(c{m^2}\). Trên cạnh bên AD lấy hai điểm M và N sao cho AM = MN = ND. Trên cạnh bên BC lấy hai điểm E và G sao cho BE = EG = GC. Nối M với E và nối N với G được hình tứ giác MEGN. Tính diện tích hình tứ giác MEGN.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Nối A với E; Nối A với C; Nối E với N; Nối N với C.

Tính diện tích hình tứ giác MEGN. (ảnh 1) 

Ta có:

\({S_{ABE}} = \frac{1}{3} \times {S_{ABC}}\) (chung chiều cao hạ từ A xuống BC và \(BE = \frac{1}{3} \times BC\))

\({S_{CDN}} = \frac{1}{3} \times {S_{ACD}}\) (chung chiều cao hạ từ C xuống DC và \(ND = \frac{1}{3} \times AD\))

Lại có: \({S_{ABC}} + {S_{ACD}} = {S_{ABCD}}\). Suy ra: \({S_{ABE}} + {S_{CDN}} = \frac{1}{3} \times {S_{ABCD}}\).

Cũng có: \({S_{ABE}} + {S_{AEM}} + {S_{EMN}} + {S_{EGN}} + {S_{CGN}} + {S_{CDN}} = {S_{ABCD}}\).

Suy ra: \({S_{AEM}} + {S_{EMN}} + {S_{EGN}} + {S_{CGN}} = \frac{2}{3} \times {S_{ABCD}}\). (1)

Mặt khác có:

\({S_{AEM}} = {S_{EMN}}\) (chung chiều cao hạ từ E xuống AD và AM = MN)

\({S_{EGN}} = {S_{CGN}}\) (chung chiều cao hạ từ N xuống BC và EG = GC)

Do đó: \({S_{AEM}} + {S_{CGN}} = {S_{EMN}} + {S_{EGN}}\) (2)

Từ (1) và (2) có: \({S_{EMN}} + {S_{EGN}} = \frac{1}{3} \times {S_{ABCD}}\)

Hay \({S_{MEGN}} = \frac{1}{3} \times {S_{ABCD}} = \frac{1}{3} \times 108 = 36(c{m^2})\)

Đáp Số: 36 (\(c{m^2}\))

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tính diện tích các tam giác MAB, MBC, MCD biết rằng AD = 20cm; BC = 10cm và đường cao của hình thang bằng 12cm. (ảnh 1)

Ta có:

\({S_{ABC}} = {S_{DBC}} = 10 \times 12:2 = 60{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\)

\({S_{ABD}} = {S_{ACD}} = 20 \times 12:2 = 120{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\) (1)

Từ (1) Suy ra: \({S_{MAB}} = {S_{MCD}}\).

Vì hai tam giác ABD và CBD có chung đáy BD mà \({S_{CBD}} = \frac{1}{2}{S_{ABD}}\). Suy ra, đường cao hạ từ A tới BD gấp 2 lần đường cao hạ từ C tới BD. (2)

Xét hai tam giác MDA và MCD có chung đáy DM và do (2) suy ra:

\({S_{MCD}} = \frac{1}{2}{S_{MDA}} = \frac{1}{3}{S_{ACD}} = 120:3 = 40{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\).

Vậy \({S_{MDA}} = 120 - 40 = 80{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\); \({S_{MBC}} = 60 - 40 = 20{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\)

Đáp Số: \({S_{MCD}} = 40{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\).               \({S_{MDA}} = 80{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\);           \({S_{MBC}} = 20{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\)

Lời giải

Tính diện tích hình thang ABCD. (ảnh 1)

Cắt hình tam giác ABM rồi ghép hình được tam giác ADE.

Do đó: \({S_{ABCD}} = {S_{ADE}} = {S_{AMD}} + {S_{MDE}}\).

Có: \({S_{AMD}} = {S_{MDE}}\) (vì AM = ME và chung chiều cao hạ từ D xuống AE)

Do đó: \({S_{MDE}} = 12,5(c{m^2})\)

Vậy \({S_{ABCD}} = 12,5 + 12,5 = 25(c{m^2})\)

Đáp Số: 25 \(c{m^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP