Câu hỏi:

19/08/2025 53 Lưu

Cho hình thang ABCD có đáy bé AB và đáy lớn DC. Trên cạnh BC lấy trung điểm M. Nối M với A và nối M với D được hình tam giác AMD có diện tích 12,5 \(c{m^2}\). Tính diện tích hình thang ABCD.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tính diện tích hình thang ABCD. (ảnh 1)

Cắt hình tam giác ABM rồi ghép hình được tam giác ADE.

Do đó: \({S_{ABCD}} = {S_{ADE}} = {S_{AMD}} + {S_{MDE}}\).

Có: \({S_{AMD}} = {S_{MDE}}\) (vì AM = ME và chung chiều cao hạ từ D xuống AE)

Do đó: \({S_{MDE}} = 12,5(c{m^2})\)

Vậy \({S_{ABCD}} = 12,5 + 12,5 = 25(c{m^2})\)

Đáp Số: 25 \(c{m^2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tính diện tích các tam giác MAB, MBC, MCD biết rằng AD = 20cm; BC = 10cm và đường cao của hình thang bằng 12cm. (ảnh 1)

Ta có:

\({S_{ABC}} = {S_{DBC}} = 10 \times 12:2 = 60{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\)

\({S_{ABD}} = {S_{ACD}} = 20 \times 12:2 = 120{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\) (1)

Từ (1) Suy ra: \({S_{MAB}} = {S_{MCD}}\).

Vì hai tam giác ABD và CBD có chung đáy BD mà \({S_{CBD}} = \frac{1}{2}{S_{ABD}}\). Suy ra, đường cao hạ từ A tới BD gấp 2 lần đường cao hạ từ C tới BD. (2)

Xét hai tam giác MDA và MCD có chung đáy DM và do (2) suy ra:

\({S_{MCD}} = \frac{1}{2}{S_{MDA}} = \frac{1}{3}{S_{ACD}} = 120:3 = 40{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\).

Vậy \({S_{MDA}} = 120 - 40 = 80{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\); \({S_{MBC}} = 60 - 40 = 20{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\)

Đáp Số: \({S_{MCD}} = 40{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\).               \({S_{MDA}} = 80{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\);           \({S_{MBC}} = 20{\rm{ (c}}{{\rm{m}}^2}{\rm{)}}\)

Lời giải

Tính diện tích hình tứ giác MGNE. (ảnh 1)

Nối M với N. Ta có: AMND và BMNC là hai hình thang.

Tương tự bài 2, trong hai hình thang AMND và BMNC ta lần lượt có được:

\({S_{AED}} = {S_{EMN}}\)\({S_{BGC}} = {S_{GMN}} \Rightarrow {S_{EMN}} + {S_{GMN}} = {S_{AED}} + {S_{BGC}}\)

\({S_{EMN}} + {S_{GMN}} = {S_{MGNE}}\).

Do đó: \({S_{MGNE}} = {S_{AED}} + {S_{BGC}} = 1,2 + 3,4 = 4,6(c{m^2})\)

Đáp Số: 4,6 (\(c{m^2}\)).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP