Câu hỏi:

04/08/2025 5 Lưu

Giả sử khối lượng còn lại của một chất phóng xạ (gam) sau 1 ngày phân rã được cho bởi hàm số \[m(t) = 15{e^{ - 0,0012t}}\]. Khối lượng m(t) thay đổi ra sao khi \[t \to  + \infty \]? Điều này thể hiện trên Hình vẽ bên như thế nào?
Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(\mathop {\lim }\limits_{t \to  + \infty } m(t) = \mathop {\lim }\limits_{t \to  + \infty } 15{e^{ - 0,012t}} = \mathop {\lim }\limits_{t \to  + \infty } \frac{{15}}{{{e^{0,012t}}}} = 0\)

Do đó, \(m(t) \to 0\) khi \(t \to  + \infty \).

Trong hình vẽ , khi \(t \to  + \infty \) thì \({\rm{m}}({\rm{t}})\) càng gần trục hoành \({\rm{Ot}}\) (nhưng không chạm trục \({\rm{Ot}}\) ).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sau 1 phút, ta có: khối lượng muối trong bể là 25 . 30 . t = 750t (gam); thể tích của lượng nước trong bể là 5 000 + 25t (lít). Vậy nồng độ muối sau 1 phút là \[f(t) = \frac{{750t}}{{5000 + 25t}} = \frac{{30t}}{{200 + t}}\] (gam/lít).

b) Ta có: \[\mathop {\lim }\limits_{t \to  + \infty } f(t) = \mathop {\lim }\limits_{t \to  + \infty } \frac{{30t}}{{200 + t}} = \mathop {\lim }\limits_{t \to  + \infty } \left( {30 - \frac{{6000}}{{200 + t}}} \right) = 30\]

Vậy đường thẳng y = 30 là tiệm cận ngang của đồ thị hàm số f(t).

c) Ta có đồ thị hàm số y = f(t) nhận đường thẳng y = 30 làm tiệm cận ngang, tức là khi t càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít). Lúc đó, nồng độ muối trong bể sẽ gần như bằng nồng độ muối trong nước muối được bơm vào bể.

Lời giải

Tập xác định: D = ℝ.

Ta có: \[\mathop {\lim }\limits_{x \to  - \infty } \] [\[55 - \frac{1}{2}\sqrt {{x^2} + 144} \]−(\[55 - \frac{1}{2}x\])] = 0

Tương tự ta cũng có: \[\mathop {\lim }\limits_{x \to  + \infty } \] [\[55 - \frac{1}{2}\sqrt {{x^2} + 144} \]−(\[55 - \frac{1}{2}x\])] = 0

Do đó y = \[55 - \frac{1}{2}x\] là tiệm cận xiên của đồ thị hàm số y = \[55 - \frac{1}{2}\sqrt {{x^2} + 144} \].