Câu hỏi:

19/08/2025 112 Lưu

Xét tình huống: Giả sử chi phí tiền xăng C (đồng) phụ thuộc tốc độ trung bình v (km/h) theo công thức: \[C(v) = \frac{{16000}}{v} + \frac{5}{2}v,(0 < v < 120)\]

a) Khảo sát và vẽ đồ thị hàm số C (v) trên (0; 120].

b) Tài xế xe tải lái xe với tốc độ trung bình là bao nhiêu để tiết kiệm tiền xăng nhất?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Khảo sát và vẽ đồ thị của hàm số C (v):

Tập xác định: D = (0; 120].

Sự biến thiên:

+ Chiều biến thiên:  

·         Đạo hàm C '(v) = 0 ⇔ v = –80 (loại) hoặc v = 80.

·         Trên khoảng (0; 80), C '(v) < 0 nên hàm số nghịch biến trên khoảng này.

·         Trên khoảng (80; 120), C '(v) > 0 nên hàm số đồng biến trên khoảng này.

+ Cực trị: Hàm số đạt cực tiểu tại v = 80, CCT = C(80) = 400.

+ Giới hạn vô cực và tiệm cận: \[\mathop {\lim }\limits_{v \to {0^ + }} C(v) =  + \infty \] nên đường thẳng v = 0 là tiệm cận đứng của đồ thị hàm số.

+ Bảng biến thiên:

Xét tình huống: Giả sử chi phí tiền xăng C (đồng) phụ thuộc tốc độ trung bình v (km/h) theo công thức (ảnh 1)
– Đồ thị:
Đồ thị hàm số có điểm cực tiểu (80; 400) và đi qua các điểm (40; 500), (100; 410), (120; \[\frac{{1300}}{3}\]) như Hình vẽ bên dưới.
Xét tình huống: Giả sử chi phí tiền xăng C (đồng) phụ thuộc tốc độ trung bình v (km/h) theo công thức (ảnh 2)
b) Quan sát đồ thị hàm số, ta nhận thấy hàm số đạt GTNN khi v = 80 và GTNN là 400. Như vậy, để tiết kiệm tiền xăng nhất, tài xế nên chạy xe với tốc độ trung bình là 80 km/h.
 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: \[f(52) = \frac{{26.52 + 10}}{{52 + 5}} = \frac{{1362}}{{57}} \approx 23,895\] (nghìn người).
Vậy số dân của thị trấn vào năm 2022 khoảng 23 895 người.
b) 1) Sự biến thiên
• Giới hạn tại vô cực và đường tiệm cận ngang:
\[\mathop {\lim }\limits_{t \to  + \infty } f(t) = 26\] . Do đó, đường thẳng y = 26 là tiệm cận ngang của đồ thị hàm số.
\[f'(t) = \frac{{120}}{{{{\left( {t + 5} \right)}^2}}} > 0\] với mọi t≥0.
Bảng biến thiên
Media VietJack
Hàm số ĐB trên nửa khoảng \[\left[ {0; + \infty } \right)\]. Hàm số không có cực trị.

2) Đồ thị

• Giao điểm của đồ thị với trục tung: (0:2).

• Đồ thị hàm số đi qua điểm (1 ; 6).

Vậy đồ thị hàm số \[y = f(t) = \frac{{26t + 10}}{{t + 5}},t \ge 0\] thể hiện như hình vẽ dưới đây:
Số dân của một thị trấn sau t năm kể từ năm 1970 được ước tính bởi công thức: f(t)=26t+10/t+5 (ảnh 1)
c)
c1) Tốc độ tăng dân số vào năm 2022 của thị trấn là: \[f'(52) = \frac{{120}}{{{{\left( {52 + 5} \right)}^2}}} = \frac{{40}}{{1083}}\]
c2)  Ta có: \[f'(t) = 0,192 \Leftrightarrow \frac{{120}}{{{{\left( {t + 5} \right)}^2}}} = 0,192 \Leftrightarrow t = 20{\rm{ }}(do{\rm{ }}t \ge 0)\]
Vậy vào năm 1990, thì tốc độ tăng dân số là 0,192 nghìn người/năm.

Lời giải

a) Theo ý nghĩa cơ học của đạo hàm, vận tốc của vật là v = h’(t)=24,5 – 9,8t (m/s).

Do đó, vận tốc của vật sau 2 giây là v(2) =24,5–9,8.2=4,9 (m/s).
b) Vì h(t) là hàm số bậc hai có hệ số a = –4,9 < 0 nên h(t) đạt giá trị lớn nhất tại \[t =  - \frac{b}{{2a}} = \frac{{24,5}}{{2.4,9}} = 2,5\] (giây). Khi đó, độ cao lớn nhất của vật là h(2,5) = 32,625 (m).
c) Vật chạm đất khi độ cao bằng 0, tức là h=2+24,5t – 4,9t2 =0, hay t \[ \approx \] 5,08 (giây).
Vận tốc của vật lúc chạm đất là v(5,08)=24,5 – 9,8.5,08 = -25,284 (m/s).
Vận tốc âm chứng tỏ chiều chuyển động của vật là ngược chiều dương (hướng lên trên) của trục đã chọn (khi lập phương trình chuyển động của vật).