Câu hỏi:

19/08/2025 87 Lưu

Xét một vật thật đặt trước thấu kính hội tụ có tiêu cự f  > 0. Gọi d là khoảng cách từ vật đến thấu kính (d > 0), d ′ là khoảng cách từ thấu kính đến ảnh (ảnh thật thì d ′ > 0, ảnh ảo thì d ′ < 0). Ta có công thức: \[\frac{1}{f} = \frac{1}{d} + \frac{1}{{d'}}{\rm{ }}hay{\rm{ }}d' = \frac{{df}}{{d - f}}\]. (Vật lí 11, Nhà xuất bản Giáo dục Việt Nam, 2012, trang 182, 187).

Xét trường hợp f = 3, đặt x = d, y = d ′. Ta có hàm số \[y = \frac{{3x}}{{x - 3}}\]và x ≠ 3.

Xét một vật thật đặt trước thấu kính hội tụ có tiêu cự f  > 0. Gọi d là khoảng cách từ vật đến thấu kính (d > 0) (ảnh 1)

a) Khảo sát và vẽ đồ thị của hàm số trên.

b) Dựa vào đồ thị hàm số trên, hãy cho biết vị trí của vật để ảnh của vật là: ảnh thật, ảnh ảo.

c) Khi vật tiến gần đến tiêu điểm thì ảnh thay đổi như thế nào?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Vì \(d > 0\) nên với \(x = d\) thì \(x > 0\).

Xét hàm số \(y = \frac{{3x}}{{x - 3}}\) với \(x > 0\) và \(x \ne 3\).

Tập xác định: \(D = (0;3) \cup (3; + \infty )\).

Sự biến thiền:

Chiều biến thiên:

Đạo hàm \({y^\prime } = \frac{{ - 9}}{{{{(x - 3)}^2}}}\). Vi \({y^\prime } < 0\) với mọi \(x > 0\) và \(x \ne 3\) nên hàm số nghịch biến trên mỗi khoảng \((0;3)\) và \((3; + \infty )\).

Tiệm cận:

Ta có \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \frac{{3x}}{{x - 3}} = 3\). Suy ra đường thắng \(y = 3\) là tiệm cận ngang của đồ thị hàm số. Ta có \(\mathop {\lim }\limits_{x \to {3^ - }} y = \mathop {\lim }\limits_{x \to {3^3}} \frac{{3x}}{{x - 3}} =  - \infty ;\mathop {\lim }\limits_{x \to {3^ + }} y = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{3x}}{{x - 3}} =  + \infty \). Suy ra đường thẳng \({\rm{x}} = 3\) là tiệm cận đứng của đồ thị hàm số.

Bảng biến thiên:

Xét một vật thật đặt trước thấu kính hội tụ có tiêu cự f  > 0. Gọi d là khoảng cách từ vật đến thấu kính (d > 0) (ảnh 2)

Đồ thị:

Đồ thị hàm số đi qua điếm \((2; - 6)\) và điếm \((6;6)\).

Đồ thị của hàm số đã cho được biếu diễn như hình dưới đây.

Xét một vật thật đặt trước thấu kính hội tụ có tiêu cự f  > 0. Gọi d là khoảng cách từ vật đến thấu kính (d > 0) (ảnh 3)

b) Đế vật là ảnh thật thì \({{\rm{d}}^\prime } > 0\), tức là \(y > 0\).

Quan sát đồ thị hàm số \(y = \frac{{3x}}{{x - 3}}\), ta thấy trên khoảng \((3; + \infty )\), đồ thị hàm số nằm phía trên trục \({\rm{Ox}}\) nên \({\rm{y}} > 0\) trên khoảng này. Vậy với \(x > 3\), tức \({\rm{d}} > 3\) hay khoảng cách từ vật đến thấy kính lớn hơn 3 thì ảnh của vật là ảnh thật.

Đế vật là ảnh áo thì \({{\rm{d}}^\prime } < 0\), tức là \(y < 0\).

Quan sát đồ thị hàm số \(y = \frac{{3x}}{{x - 3}}\), ta thấy trên khoáng \((0;3)\), đồ thị hàm số nằm phía dưới trục Ox nên \({\rm{y}} < 0\) trên khoảng này. Vậy với \(x \in (0;3)\), tức \(d \in (0;3)\) hay khoảng cách từ vật đến thấu kính lớn hơn 0 và nhỏ hơn 3 thì ảnh của vật là ảnh âo.

c) Khi vật tiến gần đến tiêu điếm, tức vị trí \(A\) tiến gần đến vị trí \(F\), thì khoáng cách $A F$ dần tiến tới 0 , hay \({\rm{d}} - {\rm{f}} \to 0\), suy ra \({\rm{d}} \to {\rm{f}}\), tức là \({\rm{x}} \to 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: \[f(52) = \frac{{26.52 + 10}}{{52 + 5}} = \frac{{1362}}{{57}} \approx 23,895\] (nghìn người).
Vậy số dân của thị trấn vào năm 2022 khoảng 23 895 người.
b) 1) Sự biến thiên
• Giới hạn tại vô cực và đường tiệm cận ngang:
\[\mathop {\lim }\limits_{t \to  + \infty } f(t) = 26\] . Do đó, đường thẳng y = 26 là tiệm cận ngang của đồ thị hàm số.
\[f'(t) = \frac{{120}}{{{{\left( {t + 5} \right)}^2}}} > 0\] với mọi t≥0.
Bảng biến thiên
Media VietJack
Hàm số ĐB trên nửa khoảng \[\left[ {0; + \infty } \right)\]. Hàm số không có cực trị.

2) Đồ thị

• Giao điểm của đồ thị với trục tung: (0:2).

• Đồ thị hàm số đi qua điểm (1 ; 6).

Vậy đồ thị hàm số \[y = f(t) = \frac{{26t + 10}}{{t + 5}},t \ge 0\] thể hiện như hình vẽ dưới đây:
Số dân của một thị trấn sau t năm kể từ năm 1970 được ước tính bởi công thức: f(t)=26t+10/t+5 (ảnh 1)
c)
c1) Tốc độ tăng dân số vào năm 2022 của thị trấn là: \[f'(52) = \frac{{120}}{{{{\left( {52 + 5} \right)}^2}}} = \frac{{40}}{{1083}}\]
c2)  Ta có: \[f'(t) = 0,192 \Leftrightarrow \frac{{120}}{{{{\left( {t + 5} \right)}^2}}} = 0,192 \Leftrightarrow t = 20{\rm{ }}(do{\rm{ }}t \ge 0)\]
Vậy vào năm 1990, thì tốc độ tăng dân số là 0,192 nghìn người/năm.

Lời giải

a) Theo ý nghĩa cơ học của đạo hàm, vận tốc của vật là v = h’(t)=24,5 – 9,8t (m/s).

Do đó, vận tốc của vật sau 2 giây là v(2) =24,5–9,8.2=4,9 (m/s).
b) Vì h(t) là hàm số bậc hai có hệ số a = –4,9 < 0 nên h(t) đạt giá trị lớn nhất tại \[t =  - \frac{b}{{2a}} = \frac{{24,5}}{{2.4,9}} = 2,5\] (giây). Khi đó, độ cao lớn nhất của vật là h(2,5) = 32,625 (m).
c) Vật chạm đất khi độ cao bằng 0, tức là h=2+24,5t – 4,9t2 =0, hay t \[ \approx \] 5,08 (giây).
Vận tốc của vật lúc chạm đất là v(5,08)=24,5 – 9,8.5,08 = -25,284 (m/s).
Vận tốc âm chứng tỏ chiều chuyển động của vật là ngược chiều dương (hướng lên trên) của trục đã chọn (khi lập phương trình chuyển động của vật).