Câu hỏi:

06/08/2025 10 Lưu

Xét một vật thật đặt trước thấu kính hội tụ có tiêu cự f  > 0. Gọi d là khoảng cách từ vật đến thấu kính (d > 0), d ′ là khoảng cách từ thấu kính đến ảnh (ảnh thật thì d ′ > 0, ảnh ảo thì d ′ < 0). Ta có công thức: \[\frac{1}{f} = \frac{1}{d} + \frac{1}{{d'}}{\rm{ }}hay{\rm{ }}d' = \frac{{df}}{{d - f}}\]. (Vật lí 11, Nhà xuất bản Giáo dục Việt Nam, 2012, trang 182, 187).

Xét trường hợp f = 3, đặt x = d, y = d ′. Ta có hàm số \[y = \frac{{3x}}{{x - 3}}\]và x ≠ 3.

Xét một vật thật đặt trước thấu kính hội tụ có tiêu cự f  > 0. Gọi d là khoảng cách từ vật đến thấu kính (d > 0) (ảnh 1)

a) Khảo sát và vẽ đồ thị của hàm số trên.

b) Dựa vào đồ thị hàm số trên, hãy cho biết vị trí của vật để ảnh của vật là: ảnh thật, ảnh ảo.

c) Khi vật tiến gần đến tiêu điểm thì ảnh thay đổi như thế nào?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Vì \(d > 0\) nên với \(x = d\) thì \(x > 0\).

Xét hàm số \(y = \frac{{3x}}{{x - 3}}\) với \(x > 0\) và \(x \ne 3\).

Tập xác định: \(D = (0;3) \cup (3; + \infty )\).

Sự biến thiền:

Chiều biến thiên:

Đạo hàm \({y^\prime } = \frac{{ - 9}}{{{{(x - 3)}^2}}}\). Vi \({y^\prime } < 0\) với mọi \(x > 0\) và \(x \ne 3\) nên hàm số nghịch biến trên mỗi khoảng \((0;3)\) và \((3; + \infty )\).

Tiệm cận:

Ta có \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \frac{{3x}}{{x - 3}} = 3\). Suy ra đường thắng \(y = 3\) là tiệm cận ngang của đồ thị hàm số. Ta có \(\mathop {\lim }\limits_{x \to {3^ - }} y = \mathop {\lim }\limits_{x \to {3^3}} \frac{{3x}}{{x - 3}} =  - \infty ;\mathop {\lim }\limits_{x \to {3^ + }} y = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{3x}}{{x - 3}} =  + \infty \). Suy ra đường thẳng \({\rm{x}} = 3\) là tiệm cận đứng của đồ thị hàm số.

Bảng biến thiên:

Xét một vật thật đặt trước thấu kính hội tụ có tiêu cự f  > 0. Gọi d là khoảng cách từ vật đến thấu kính (d > 0) (ảnh 2)

Đồ thị:

Đồ thị hàm số đi qua điếm \((2; - 6)\) và điếm \((6;6)\).

Đồ thị của hàm số đã cho được biếu diễn như hình dưới đây.

Xét một vật thật đặt trước thấu kính hội tụ có tiêu cự f  > 0. Gọi d là khoảng cách từ vật đến thấu kính (d > 0) (ảnh 3)

b) Đế vật là ảnh thật thì \({{\rm{d}}^\prime } > 0\), tức là \(y > 0\).

Quan sát đồ thị hàm số \(y = \frac{{3x}}{{x - 3}}\), ta thấy trên khoảng \((3; + \infty )\), đồ thị hàm số nằm phía trên trục \({\rm{Ox}}\) nên \({\rm{y}} > 0\) trên khoảng này. Vậy với \(x > 3\), tức \({\rm{d}} > 3\) hay khoảng cách từ vật đến thấy kính lớn hơn 3 thì ảnh của vật là ảnh thật.

Đế vật là ảnh áo thì \({{\rm{d}}^\prime } < 0\), tức là \(y < 0\).

Quan sát đồ thị hàm số \(y = \frac{{3x}}{{x - 3}}\), ta thấy trên khoáng \((0;3)\), đồ thị hàm số nằm phía dưới trục Ox nên \({\rm{y}} < 0\) trên khoảng này. Vậy với \(x \in (0;3)\), tức \(d \in (0;3)\) hay khoảng cách từ vật đến thấu kính lớn hơn 0 và nhỏ hơn 3 thì ảnh của vật là ảnh âo.

c) Khi vật tiến gần đến tiêu điếm, tức vị trí \(A\) tiến gần đến vị trí \(F\), thì khoáng cách $A F$ dần tiến tới 0 , hay \({\rm{d}} - {\rm{f}} \to 0\), suy ra \({\rm{d}} \to {\rm{f}}\), tức là \({\rm{x}} \to 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Khi bán x mét vải lụa:
Số tiền thu được là: B (x) = 220x (nghìn đồng).
Lợi nhuận thu được là: L (x) = B (x) – C (x) = –x3 + 3x2 + 240x – 500 (nghìn đồng).
b) Hàm số L (x) xác định trên [1; 18].
– Sự biến thiên:
+ Chiều biến thiên:

Đạo hàm L '(x) = –3x2 + 6x + 240; L '(x) = 0 ⇔ x = 10 hoặc x = –8 (loại).

Trên khoảng (1; 10), L '(x) > 0 nên hàm số đồng biến trên khoảng này.
Trên khoảng (10; 18), L '(x) < 0 nên hàm số nghịch biến trên khoảng này.
+ Cực trị: Hàm số L(x) đạt cực đại tại x = 10 và LCĐ = L(10) = 1 200.
+ Bảng biến thiên:
Media VietJack
– Đồ thị:
Đồ thị hàm số có điểm cực đại (10; 1 200) và đi qua các điểm (1; –258), (18; –1 040) như Hình 8.
Media VietJack
c) Quan sát đồ thị hàm số, ta nhận thấy khi x = 10 thì hàm số đạt giá trị lớn nhất là 1 200.
Như vậy, hộ làm nghề dệt cần sản xuất và bán ra mỗi ngày 10 mét vải lụa để thu được lợi nhuận tối đa. Lợi nhuận tối đa này là 1 200 nghìn đồng.

Lời giải

Ta có: \[P'(t) = \frac{{0,75a{e^{ - 0,75t}}}}{{{{\left( {b + {e^{ - 0,75t}}} \right)}^2}}},t \ge 0\]
Theo đề bài, ta có: P(0) = 20 và P’(0) = 12. Do đó, ta có hệ phương trình: \[\left\{ \begin{array}{l}\frac{a}{{b + 1}} = 20\\\frac{{0,75a}}{{{{\left( {b + 1} \right)}^2}}} = 12\end{array} \right.\]
Giải hệ phương trình này, ta được a = 25 và b = \[\frac{1}{4}\]
Khi đó, \[P'(t) = \frac{{18,75{e^{ - 0,75t}}}}{{{{\left( {\frac{1}{4} + {e^{ - 0,75t}}} \right)}^2}}} > 0,\forall t \ge 0\], tức là số lượng quần thể nấm men luôn tăng.
Tuy nhiên, do \[\mathop {\lim }\limits_{t \to  + \infty } P(t) = \mathop {\lim }\limits_{t \to  + \infty } \frac{{25}}{{\frac{1}{4} + {e^{ - 0,75t}}}} = 100\] nên số lượng quần thể nấm men tăng nhưng không vượt quá 100 tế bào.

Câu 7

(Bài toán thiết kế mô hình đánh giá kĩ năng) Một trung tâm dạy nghề cần thiết kế mô hình đánh giá kĩ năng của một học viên theo học nghề đánh máy. Người ta có thể làm như sau:

• Để xây dựng mô hình toán học cho bài toán trên, ta sử dụng thống kê. Bằng cách khảo sát tốc độ đánh máy trung bình S (tính bằng từ trên phút) của học viên đó sau 1 tuần học (5 ≤ t ≤ 30), ta thu thập các số liệu thống kê được cho trong Bảng 1 (Nguồn: R. Larson and B. Edwards, Calculus 10e, Cengage 2014).

(Bài toán thiết kế mô hình đánh giá kĩ năng) Một trung tâm dạy nghề cần thiết kế mô hình đánh giá kĩ năng của một học viên theo học nghề đánh máy (ảnh 1)

• Ta cần chọn hàm số y = f (t) để biểu diễn các số liệu ở Bảng 1, tức là ở hệ trục toạ độ Oxy, đồ thị của hàm số đó trên khoảng (0 ; + \[\infty \]) “gần” với các điểm A(5 ; 38), B(10 ; 56), C(15 ; 79), D(20 ; 90), E(25 ; 93), G(30 ; 94). Ngoài ra, do tốc độ đánh máy trung bình của học viên tăng theo thời gian t và chỉ đến một giới hạn M nào đó cho dù thời gian t có kéo dài đến vô cùng nên hàm số y = f (t) phải thỏa mãn thêm hai điều kiện: Hàm số đó ĐB trên khoảng (0 ; + \[\infty \]) và \[\mathop {\lim }\limits_{t \to  + \infty } f(t) = M \in \mathbb{R},M > 94\]. Vì các hàm đa thức (với bậc lớn hơn hoặc bằng 1) không thỏa mãn hai điều kiện đó nên ta chọn một hàm phân thức hữu tỉ để biểu diễn các số liệu ở Bảng 1.

Ta có thể chọn hàm số có dạng \[f(t) = \frac{{at + b}}{{ct + d}}\]  (ac ≠ 0) cho mục đích đó. Dựa vào Bảng 1, ta chọn hàm số:

\[f(t) = \frac{{110t - 280}}{{t + 2}},(t > 0)\]

a) Dựa theo mô hình đó, dự đoán tốc độ đánh máy trung bình của học viên đó sau 40 tuần (làm tròn kết quả đến hàng đơn vị của từ/phút)

b) Xem y = f(t) là một hàm số xác định trên khoảng (0 ; + \[\infty \]), hãy tìm tiệm cận ngang của đồ thị hàm số đó.

c) Nêu nhận xét về tốc độ đánh máy trung bình của học viên đó sau thời gian t ngày càng lớn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP