Câu hỏi:

19/08/2025 211 Lưu

Bạn Việt muốn dùng tấm bìa hình vuông cạnh 6 dm làm một chiếc hộp không nắp, có đáy là hình vuông bằng cách cắt bỏ đi 4 hình vuông nhỏ ở bốn góc của tấm bìa (Hình vẽ bên dưới).

Bạn Việt muốn dùng tấm bìa hình vuông cạnh 6 dm làm một chiếc hộp không nắp, có đáy là hình vuông bằng cách cắt bỏ đi 4 hình vuông (ảnh 1)

Bạn Việt muốn tìm độ dài cạnh hình vuông cần cắt bỏ để chiếc hộp đạt thể tích lớn nhất.

a) Hãy thiết lập hàm số biểu thị thể tích hộp theo x với x là độ dài cạnh hình vuông cần cắt đi.

b) Khảo sát và vẽ đồ thị hàm số tìm được. Từ đó, hãy tư vấn cho bạn Việt cách giải quyết vấn đề và giải thích vì sao cần chọn giá trị này. (Làm tròn kết quả đến hàng phần mười.)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sau khi cắt bốn góc tấm bìa và dựng thành chiếc hộp không nắp, khi đó chiếc hộp dựng thành có dạng hình hộp chữ nhật với các kích thước là \({\rm{x}},6 - 2{\rm{x}}\) và \(6 - 2{\rm{x}}({\rm{dm}})\).

Rõ ràng \({\rm{x}}\) phải thỏa mãn điều kiện \(0 < {\rm{x}} < 3\).

Thể tích của chiếc hộp là \({\rm{V}}({\rm{x}}) = {\rm{x}}{(6 - 2{\rm{x}})^2}\left( {{\rm{d}}{{\rm{m}}^3}} \right)\quad (0 < {\rm{x}} < 3)\).

b) Xét hàm số \({\rm{V}}({\rm{x}}) = {\rm{x}}{(6 - 2{\rm{x}})^2}\) với \({\rm{x}} \in (0;3)\).

Tập xác định: \({\rm{D}} = (0;3)\).

Sự biến thiên:

Chiều biến thiên:

Đạo hàm \({{\rm{V}}^\prime }({\rm{x}}) = {(6 - 2{\rm{x}})^2} + {\rm{x}} \cdot 2(6 - 2{\rm{x}}) \cdot ( - 2) = (6 - 2{\rm{x}})(6 - 6{\rm{x}})\).

Trên khoảng \((0;3)\), ta có \({{\rm{V}}^\prime }({\rm{x}}) = 0 \Leftrightarrow {\rm{x}} = 1\).

Trên khoảng \((0;1),{{\rm{V}}^\prime }({\rm{x}}) > 0\) nên hàm số đồng biến trên khoảng đó.

Trên khoảng \((1;3),{{\rm{V}}^\prime }({\rm{x}}) < 0\) nên hàm số nghịch biến trên khoảng đó.

Hàm số có một điểm cực trị là điểm cực đại tại \({\rm{x}} = 1,{{\rm{y}}_{{\rm{CD}}}} = 16\).

Bảng biến thiên:

Bạn Việt muốn dùng tấm bìa hình vuông cạnh 6 dm làm một chiếc hộp không nắp, có đáy là hình vuông bằng cách cắt bỏ đi 4 hình vuông (ảnh 2)

Đồ thị:

Trên khoảng \((0;3)\), đồ thị hàm số đi qua các điểm \((1;16)\) và \((2;8)\).

Đồ thị hàm số \({\rm{V}}({\rm{x}})\) trên khoảng \((0;3)\) được biểu diễn như hình dưới đây.

Bạn Việt muốn dùng tấm bìa hình vuông cạnh 6 dm làm một chiếc hộp không nắp, có đáy là hình vuông bằng cách cắt bỏ đi 4 hình vuông (ảnh 3)

Từ đó, ta thấy đế tìm được độ dài cạnh hình vuông cần cắt bó để chiếc hộp đạt thế tích lớn nhất, ta cần tìm \({x_0} \in (0;3)\) sao cho \({\rm{V}}\left( {{{\rm{x}}_0}} \right)\) có giá trị lớn nhất.

Căn cứ vào bảng biến thiên ta thấy trong khoảng \((0;3)\) hàm số có một điếm cực trị duy nhất là điếm cực đại \(x = 1\) nên tại đó \({\rm{V}}({\rm{x}})\) có giá trị lớn nhất là \({\max _{(0;3)}}V(x) = 16\).

Vậy độ dài cạnh của hình vuông cần cắt bỏ là \(1{\rm{dm}}\) thì chiếc hộp có thế tích lớn nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: \[f(52) = \frac{{26.52 + 10}}{{52 + 5}} = \frac{{1362}}{{57}} \approx 23,895\] (nghìn người).
Vậy số dân của thị trấn vào năm 2022 khoảng 23 895 người.
b) 1) Sự biến thiên
• Giới hạn tại vô cực và đường tiệm cận ngang:
\[\mathop {\lim }\limits_{t \to  + \infty } f(t) = 26\] . Do đó, đường thẳng y = 26 là tiệm cận ngang của đồ thị hàm số.
\[f'(t) = \frac{{120}}{{{{\left( {t + 5} \right)}^2}}} > 0\] với mọi t≥0.
Bảng biến thiên
Media VietJack
Hàm số ĐB trên nửa khoảng \[\left[ {0; + \infty } \right)\]. Hàm số không có cực trị.

2) Đồ thị

• Giao điểm của đồ thị với trục tung: (0:2).

• Đồ thị hàm số đi qua điểm (1 ; 6).

Vậy đồ thị hàm số \[y = f(t) = \frac{{26t + 10}}{{t + 5}},t \ge 0\] thể hiện như hình vẽ dưới đây:
Số dân của một thị trấn sau t năm kể từ năm 1970 được ước tính bởi công thức: f(t)=26t+10/t+5 (ảnh 1)
c)
c1) Tốc độ tăng dân số vào năm 2022 của thị trấn là: \[f'(52) = \frac{{120}}{{{{\left( {52 + 5} \right)}^2}}} = \frac{{40}}{{1083}}\]
c2)  Ta có: \[f'(t) = 0,192 \Leftrightarrow \frac{{120}}{{{{\left( {t + 5} \right)}^2}}} = 0,192 \Leftrightarrow t = 20{\rm{ }}(do{\rm{ }}t \ge 0)\]
Vậy vào năm 1990, thì tốc độ tăng dân số là 0,192 nghìn người/năm.

Lời giải

a) Theo ý nghĩa cơ học của đạo hàm, vận tốc của vật là v = h’(t)=24,5 – 9,8t (m/s).

Do đó, vận tốc của vật sau 2 giây là v(2) =24,5–9,8.2=4,9 (m/s).
b) Vì h(t) là hàm số bậc hai có hệ số a = –4,9 < 0 nên h(t) đạt giá trị lớn nhất tại \[t =  - \frac{b}{{2a}} = \frac{{24,5}}{{2.4,9}} = 2,5\] (giây). Khi đó, độ cao lớn nhất của vật là h(2,5) = 32,625 (m).
c) Vật chạm đất khi độ cao bằng 0, tức là h=2+24,5t – 4,9t2 =0, hay t \[ \approx \] 5,08 (giây).
Vận tốc của vật lúc chạm đất là v(5,08)=24,5 – 9,8.5,08 = -25,284 (m/s).
Vận tốc âm chứng tỏ chiều chuyển động của vật là ngược chiều dương (hướng lên trên) của trục đã chọn (khi lập phương trình chuyển động của vật).