Câu hỏi:

19/08/2025 2,535 Lưu

Để loại bỏ x% chất gây ô nhiễm không khí từ khí thải của một nhà máy, người ta ước tính chi phí cần bỏ ra là \[C(x) = \frac{{300x}}{{100 - x}}\](triệu đồng), 0 ≤ x <100.

Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = C(x). Từ đó, hãy cho biết:

a) Chi phí cần bỏ ra sẽ thay đổi như thế nào khi x tăng?

b) Có thể loại bỏ được 100% chất gây ô nhiễm không khí không? Vì sao?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét hàm số \[y = C(x) = \frac{{300x}}{{100 - x}},0 \le x < 100\].

Ta có: \[y' = \frac{{30{\rm{ }}000}}{{{{\left( {100 - x} \right)}^2}}} > 0\], với mọi x \[ \in \] [0; 100).

Do đó hàm số luôn đồng biến trên nửa khoảng [0; 100).

Ta có: \[\mathop {\lim }\limits_{x \to {{100}^ - }} C(x) = \mathop {\lim }\limits_{x \to {{100}^ - }} \frac{{300x}}{{100 - x}} =  + \infty \], nên đồ thị hàm số có tiệm cận đứng là x = 100.

Bảng biến thiên:

Để loại bỏ x% chất gây ô nhiễm không khí từ khí thải của một nhà máy, người ta ước tính chi phí cần bỏ ra là C(x) = 300x/100-x (triệu đồng) (ảnh 1)
Đồ thị hàm số như Hình 1.34.
Để loại bỏ x% chất gây ô nhiễm không khí từ khí thải của một nhà máy, người ta ước tính chi phí cần bỏ ra là C(x) = 300x/100-x (triệu đồng) (ảnh 2)

a) Chi phí cần bỏ ra C(x) sẽ luôn tăng khi x tăng.

b) Vì \[\mathop {\lim }\limits_{x \to {{100}^ - }} C(x) = + \infty \] (hàm số C(x) không xác định khi x = 100) nên nhà máy không thể loại bỏ 100% chất gây ô nhiễm không khí (dù bỏ ra chi phí là bao nhiêu đi chăng nữa).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: \[f(52) = \frac{{26.52 + 10}}{{52 + 5}} = \frac{{1362}}{{57}} \approx 23,895\] (nghìn người).
Vậy số dân của thị trấn vào năm 2022 khoảng 23 895 người.
b) 1) Sự biến thiên
• Giới hạn tại vô cực và đường tiệm cận ngang:
\[\mathop {\lim }\limits_{t \to  + \infty } f(t) = 26\] . Do đó, đường thẳng y = 26 là tiệm cận ngang của đồ thị hàm số.
\[f'(t) = \frac{{120}}{{{{\left( {t + 5} \right)}^2}}} > 0\] với mọi t≥0.
Bảng biến thiên
Media VietJack
Hàm số ĐB trên nửa khoảng \[\left[ {0; + \infty } \right)\]. Hàm số không có cực trị.

2) Đồ thị

• Giao điểm của đồ thị với trục tung: (0:2).

• Đồ thị hàm số đi qua điểm (1 ; 6).

Vậy đồ thị hàm số \[y = f(t) = \frac{{26t + 10}}{{t + 5}},t \ge 0\] thể hiện như hình vẽ dưới đây:
Số dân của một thị trấn sau t năm kể từ năm 1970 được ước tính bởi công thức: f(t)=26t+10/t+5 (ảnh 1)
c)
c1) Tốc độ tăng dân số vào năm 2022 của thị trấn là: \[f'(52) = \frac{{120}}{{{{\left( {52 + 5} \right)}^2}}} = \frac{{40}}{{1083}}\]
c2)  Ta có: \[f'(t) = 0,192 \Leftrightarrow \frac{{120}}{{{{\left( {t + 5} \right)}^2}}} = 0,192 \Leftrightarrow t = 20{\rm{ }}(do{\rm{ }}t \ge 0)\]
Vậy vào năm 1990, thì tốc độ tăng dân số là 0,192 nghìn người/năm.

Lời giải

a) Trong Hình 25, đồ thị của hàm số \[y = f(x) = \frac{1}{{10}}( - {x^3} + 9{x^2} - 15x + 56)\] cắt tia Ox tại điểm có hoành độ x = 8. Vậy đường dạo ven hồ chạy dọc theo trục Ox dài 800 m.
b) Ta khảo sát hàm số: \[y = f(x) = \frac{1}{{10}}( - {x^3} + 9{x^2} - 15x + 56)\] với 0≤ x ≤8.
f '(x) = \[\frac{1}{{10}}\] (-3x2+18x-15); f '(x)=0\[ \Leftrightarrow \]-x2+6x-5=0\[ \Leftrightarrow \]x=1 hoặc x = 5.
Bảng biến thiên:
Một hồ nước nhân tạo được xây dựng trong một công viên giải trí. Trong mô hình minh hoạ (Hình vẽ bên dưới) (ảnh 2)

Căn cứ bảng biến thiên, ta có: \[\mathop {\max }\limits_{\left[ {0;8} \right]} \] f(x)= f(5)=8,1 tại x= 5.

Vậy khoảng cách lớn nhất theo phương thẳng đứng từ một điểm trên đường đi dạo ven hồ (chạy dọc theo trục Ox) đến bờ hồ đối diện là:
100.( \[\mathop {\max }\limits_{\left[ {0;8} \right]} \] f(x))=100. f(5) = 100. 8,1 =810 (m) và đạt được tại điểm trên đường đi dạo ven hồ cách gốc O một khoảng cách là 500 m.
100.( \[\mathop {\max }\limits_{\left[ {0;8} \right]} \] f(x))=100. f(5) = 100. 8,1 =810 (m) và đạt được tại điểm trên đường đi dạo ven hồ cách gốc O một khoảng cách là 500 m.

c) Xét điểm M(x ; f(x)) thuộc đồ thị hàm số \[y = f(x) = \frac{1}{{10}}( - {x^3} + 9{x^2} - 15x + 56)\] với 0 ≤ x ≤8.

Khoảng cách từ điểm M(x ; f(x)) đến đường thẳng y=−1,5x+18\[ \Leftrightarrow \]-1,5x−y+18=0 là:
\[MH = \frac{{\left| { - 1,5x - \frac{1}{{10}}( - {x^3} + 9{x^2} - 15x + 56) + 18} \right|}}{{\sqrt {{{( - 1,5)}^2} + 1} }} = \frac{{\left| {{x^3} - 9{x^2} + 124} \right|}}{{10\sqrt {3,25} }}\]
Ta khảo sát hàm số: h(x) = x3 –9x2 +124 với 0≤x≤8.
h'(x)=3x2-18x;
h'(x)=0\[ \Leftrightarrow \]x2-6x=0\[ \Leftrightarrow \]x=0 hoặc x = 6.
Bảng biến thiên:
Một hồ nước nhân tạo được xây dựng trong một công viên giải trí. Trong mô hình minh hoạ (Hình vẽ bên dưới) (ảnh 3)

Căn cứ bảng biến thiên, ta có: h(x) > 0 với 0≤x≤8;

\[\mathop {\min }\limits_{\left[ {0;8} \right]} h(x)\]= h(6)=16 tại x= 6.
Do đó, \[\min MH = \mathop {\min }\limits_{\left[ {0;8} \right]} \frac{{\left| {{x^3} - 9{x^2} + 124} \right|}}{{10\sqrt {3,25} }} = \frac{1}{{10\sqrt {3,25} }} \cdot \mathop {\min }\limits_{\left[ {0;8} \right]} h(x) = \frac{{16}}{{10\sqrt {3,25} }} \approx 0,8875\] và đạt được tại x = 6. Khi đó, f(6) = 7,4.
Vậy trong mặt phẳng toạ độ Oxy ở Hình vẽ ban đầu, điểm để xây bến thuyền có toạ độ là M(6 ; 7,4).