Một nhà phân tích thị trường làm việc cho một công ty sản xuất thiết bị gia dụng nhận thấy rằng nếu công ty sản xuất và bán x chiếc máy xay sinh tố hằng tháng thì lợi nhuận thu được (nghìn đồng) là
P(x) = -0,3x3 +36x2 + 1800x-48 000.
Khảo sát sự biến thiên và vẽ đồ thị hàm số y =P(x), x≥0. Sử dụng đồ thị đã vẽ để trả lời các câu hỏi sau:
a) Khi chỉ sản xuất một vài máy xay sinh tố, công ty sẽ bị lỗ (vì lúc này lợi nhuận âm). Hỏi hằng tháng công ty phải sản xuất ít nhất bao nhiêu chiếc máy xay sinh tố để hoà vốn?
b) Lợi nhuận lớn nhất mà công ty có thể đạt được là bao nhiêu? Công ty có nên sản xuất 200 chiếc máy xay sinh tố hằng tháng hay không?
Một nhà phân tích thị trường làm việc cho một công ty sản xuất thiết bị gia dụng nhận thấy rằng nếu công ty sản xuất và bán x chiếc máy xay sinh tố hằng tháng thì lợi nhuận thu được (nghìn đồng) là
P(x) = -0,3x3 +36x2 + 1800x-48 000.
Khảo sát sự biến thiên và vẽ đồ thị hàm số y =P(x), x≥0. Sử dụng đồ thị đã vẽ để trả lời các câu hỏi sau:
a) Khi chỉ sản xuất một vài máy xay sinh tố, công ty sẽ bị lỗ (vì lúc này lợi nhuận âm). Hỏi hằng tháng công ty phải sản xuất ít nhất bao nhiêu chiếc máy xay sinh tố để hoà vốn?
b) Lợi nhuận lớn nhất mà công ty có thể đạt được là bao nhiêu? Công ty có nên sản xuất 200 chiếc máy xay sinh tố hằng tháng hay không?Quảng cáo
Trả lời:
Xét hàm số y = P(x)= -0,3x3 +36x2 + 1800x-48 000, x ≥ 0. |
Ta có: |
y' = P'(x) = -0,9x2 + 72x+1800; y' = 0\[ \Leftrightarrow \]x=100 (vi x ≥ 0). |
P'(x)>0 với mọi x \[ \in \] [0;100), P'(x)<0 với mọi x = (100; \[ + \infty \]). |
Do đó hàm số đồng biến trên nửa khoảng [0; 100) và nghịch biến trên khoảng (100; \[ + \infty \]). |
Tại x =100, hàm số đạt cực đại và YCĐ = y (100)=192 000. |
\[\mathop {\lim }\limits_{x \to + \infty } P(x) = - \infty \] |
Bảng biến thiên: ![]() Đồ thị hàm số như Hình 1.36 (ở đây ta lấy một đơn vị trên trục hoành bằng 1.000 đơn vị trên trục tung).
Từ đồ thị đã vẽ suy ra: a) Đồ thị xuất phát từ điểm (0; – 48 000), ![]() ở phía dưới trục hoành (tức là công ty đang bị lỗ), và giao với trục hoành tại điểm đầu tiên có hoành độ x = 20. Do đó, hằng tháng công ty cần sản xuất ít nhất 20 chiếc máy xay sinh tố để hoà vốn. b) Từ đồ thị ta thấy khi sản xuất hơn 100 chiếc máy xay sinh tố mỗi tháng thì càng sản xuất nhiều lợi nhuận càng giảm. Do đó, công ty không nên sản xuất 200 chiếc máy xay sinh tố hằng tháng. Lợi nhuận lớn nhất mà công ty có thể thu được là Yca =y(100)=192 000 (nghìn đồng), tức là 192 triệu đồng, đạt được khi sản xuất đúng 100 chiếc máy xay sinh tố mỗi tháng. |
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đạo hàm L '(x) = –3x2 + 6x + 240; L '(x) = 0 ⇔ x = 10 hoặc x = –8 (loại).
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.