Câu hỏi:

19/08/2025 51 Lưu

Khi một vật lạ mắc kẹt trong khí quản khiến ta phải ho, cơ hoành đẩy lên trên gây ra tăng áp lực trong phổi, theo đó cuống họng co thắt làm hẹp khí quản khiến không khí đi qua mạnh hơn. Đối với một lượng không khí bị đẩy ra trong một khoảng thời gian cố định, khí quản càng nhỏ thì luồng không khí càng đẩy ra nhanh hơn. Vận tốc luồng khí thoát ra càng cao, lực tác động lên vật lạ càng lớn. Qua nghiên cứu một số trường hợp, người ta nhận thấy vận tốc v của luồng khí liên hệ với bán kính x của khí quản theo công thức: \[v(x) = k({x_o} - x).{x^2}\] với \[\frac{1}{2}{x_o} \le x \le {x_o}\], trong đó k là hằng số (k > 0) và x0 là bán kính khí quản ở trạng thái bình thường. Tìm x theo x0 để vận tốc của luồng khí một cơn ho trong trường hợp này là lớn nhất. (Nguồn: James Stewart, J. (2015). Calculus. Cengage Learning 8th edition, p.285)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét hàm số f(x) = (x0 − x)x2 với x0 cố định và \[\frac{1}{2}{x_o} \le x \le {x_o}\].

Do k là hằng số nên vận tốc của luồng khí một cơn ho lớn nhất khi f(x) đạt giá trị lớn nhất.

Ta có f(x) = −x3 + x0x2;      f’(x) = −3x2 + 2x0x;    f’(x) = 0 \[ \Leftrightarrow \]x = 0 hoặc \[x = \frac{2}{3}{x_o}\].

Bảng biến thiên:
Media VietJack

Dựa vào bảng biến thiên, ta có: \[\mathop {\max }\limits_{\left[ {\frac{1}{2}{x_o};{x_o}} \right]} f(x) = f\left( {\frac{2}{3}{x_o}} \right)\].

Vậy vận tốc của luồng khí một cơn ho lớn nhất khi \[x = \frac{2}{3}{x_o}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: \[f(52) = \frac{{26.52 + 10}}{{52 + 5}} = \frac{{1362}}{{57}} \approx 23,895\] (nghìn người).
Vậy số dân của thị trấn vào năm 2022 khoảng 23 895 người.
b) 1) Sự biến thiên
• Giới hạn tại vô cực và đường tiệm cận ngang:
\[\mathop {\lim }\limits_{t \to  + \infty } f(t) = 26\] . Do đó, đường thẳng y = 26 là tiệm cận ngang của đồ thị hàm số.
\[f'(t) = \frac{{120}}{{{{\left( {t + 5} \right)}^2}}} > 0\] với mọi t≥0.
Bảng biến thiên
Media VietJack
Hàm số ĐB trên nửa khoảng \[\left[ {0; + \infty } \right)\]. Hàm số không có cực trị.

2) Đồ thị

• Giao điểm của đồ thị với trục tung: (0:2).

• Đồ thị hàm số đi qua điểm (1 ; 6).

Vậy đồ thị hàm số \[y = f(t) = \frac{{26t + 10}}{{t + 5}},t \ge 0\] thể hiện như hình vẽ dưới đây:
Số dân của một thị trấn sau t năm kể từ năm 1970 được ước tính bởi công thức: f(t)=26t+10/t+5 (ảnh 1)
c)
c1) Tốc độ tăng dân số vào năm 2022 của thị trấn là: \[f'(52) = \frac{{120}}{{{{\left( {52 + 5} \right)}^2}}} = \frac{{40}}{{1083}}\]
c2)  Ta có: \[f'(t) = 0,192 \Leftrightarrow \frac{{120}}{{{{\left( {t + 5} \right)}^2}}} = 0,192 \Leftrightarrow t = 20{\rm{ }}(do{\rm{ }}t \ge 0)\]
Vậy vào năm 1990, thì tốc độ tăng dân số là 0,192 nghìn người/năm.

Lời giải

a) Theo ý nghĩa cơ học của đạo hàm, vận tốc của vật là v = h’(t)=24,5 – 9,8t (m/s).

Do đó, vận tốc của vật sau 2 giây là v(2) =24,5–9,8.2=4,9 (m/s).
b) Vì h(t) là hàm số bậc hai có hệ số a = –4,9 < 0 nên h(t) đạt giá trị lớn nhất tại \[t =  - \frac{b}{{2a}} = \frac{{24,5}}{{2.4,9}} = 2,5\] (giây). Khi đó, độ cao lớn nhất của vật là h(2,5) = 32,625 (m).
c) Vật chạm đất khi độ cao bằng 0, tức là h=2+24,5t – 4,9t2 =0, hay t \[ \approx \] 5,08 (giây).
Vận tốc của vật lúc chạm đất là v(5,08)=24,5 – 9,8.5,08 = -25,284 (m/s).
Vận tốc âm chứng tỏ chiều chuyển động của vật là ngược chiều dương (hướng lên trên) của trục đã chọn (khi lập phương trình chuyển động của vật).