Câu hỏi:

19/08/2025 157 Lưu

Khi một vật lạ mắc kẹt trong khí quản khiến ta phải ho, cơ hoành đẩy lên trên gây ra tăng áp lực trong phổi, theo đó cuống họng co thắt làm hẹp khí quản khiến không khí đi qua mạnh hơn. Đối với một lượng không khí bị đẩy ra trong một khoảng thời gian cố định, khí quản càng nhỏ thì luồng không khí càng đẩy ra nhanh hơn. Vận tốc luồng khí thoát ra càng cao, lực tác động lên vật lạ càng lớn. Qua nghiên cứu một số trường hợp, người ta nhận thấy vận tốc v của luồng khí liên hệ với bán kính x của khí quản theo công thức: \[v(x) = k({x_o} - x).{x^2}\] với \[\frac{1}{2}{x_o} \le x \le {x_o}\], trong đó k là hằng số (k > 0) và x0 là bán kính khí quản ở trạng thái bình thường. Tìm x theo x0 để vận tốc của luồng khí một cơn ho trong trường hợp này là lớn nhất. (Nguồn: James Stewart, J. (2015). Calculus. Cengage Learning 8th edition, p.285)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét hàm số f(x) = (x0 − x)x2 với x0 cố định và \[\frac{1}{2}{x_o} \le x \le {x_o}\].

Do k là hằng số nên vận tốc của luồng khí một cơn ho lớn nhất khi f(x) đạt giá trị lớn nhất.

Ta có f(x) = −x3 + x0x2;      f’(x) = −3x2 + 2x0x;    f’(x) = 0 \[ \Leftrightarrow \]x = 0 hoặc \[x = \frac{2}{3}{x_o}\].

Bảng biến thiên:
Media VietJack

Dựa vào bảng biến thiên, ta có: \[\mathop {\max }\limits_{\left[ {\frac{1}{2}{x_o};{x_o}} \right]} f(x) = f\left( {\frac{2}{3}{x_o}} \right)\].

Vậy vận tốc của luồng khí một cơn ho lớn nhất khi \[x = \frac{2}{3}{x_o}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: \[f(52) = \frac{{26.52 + 10}}{{52 + 5}} = \frac{{1362}}{{57}} \approx 23,895\] (nghìn người).
Vậy số dân của thị trấn vào năm 2022 khoảng 23 895 người.
b) 1) Sự biến thiên
• Giới hạn tại vô cực và đường tiệm cận ngang:
\[\mathop {\lim }\limits_{t \to  + \infty } f(t) = 26\] . Do đó, đường thẳng y = 26 là tiệm cận ngang của đồ thị hàm số.
\[f'(t) = \frac{{120}}{{{{\left( {t + 5} \right)}^2}}} > 0\] với mọi t≥0.
Bảng biến thiên
Media VietJack
Hàm số ĐB trên nửa khoảng \[\left[ {0; + \infty } \right)\]. Hàm số không có cực trị.

2) Đồ thị

• Giao điểm của đồ thị với trục tung: (0:2).

• Đồ thị hàm số đi qua điểm (1 ; 6).

Vậy đồ thị hàm số \[y = f(t) = \frac{{26t + 10}}{{t + 5}},t \ge 0\] thể hiện như hình vẽ dưới đây:
Số dân của một thị trấn sau t năm kể từ năm 1970 được ước tính bởi công thức: f(t)=26t+10/t+5 (ảnh 1)
c)
c1) Tốc độ tăng dân số vào năm 2022 của thị trấn là: \[f'(52) = \frac{{120}}{{{{\left( {52 + 5} \right)}^2}}} = \frac{{40}}{{1083}}\]
c2)  Ta có: \[f'(t) = 0,192 \Leftrightarrow \frac{{120}}{{{{\left( {t + 5} \right)}^2}}} = 0,192 \Leftrightarrow t = 20{\rm{ }}(do{\rm{ }}t \ge 0)\]
Vậy vào năm 1990, thì tốc độ tăng dân số là 0,192 nghìn người/năm.

Lời giải

a) Trong Hình 25, đồ thị của hàm số \[y = f(x) = \frac{1}{{10}}( - {x^3} + 9{x^2} - 15x + 56)\] cắt tia Ox tại điểm có hoành độ x = 8. Vậy đường dạo ven hồ chạy dọc theo trục Ox dài 800 m.
b) Ta khảo sát hàm số: \[y = f(x) = \frac{1}{{10}}( - {x^3} + 9{x^2} - 15x + 56)\] với 0≤ x ≤8.
f '(x) = \[\frac{1}{{10}}\] (-3x2+18x-15); f '(x)=0\[ \Leftrightarrow \]-x2+6x-5=0\[ \Leftrightarrow \]x=1 hoặc x = 5.
Bảng biến thiên:
Một hồ nước nhân tạo được xây dựng trong một công viên giải trí. Trong mô hình minh hoạ (Hình vẽ bên dưới) (ảnh 2)

Căn cứ bảng biến thiên, ta có: \[\mathop {\max }\limits_{\left[ {0;8} \right]} \] f(x)= f(5)=8,1 tại x= 5.

Vậy khoảng cách lớn nhất theo phương thẳng đứng từ một điểm trên đường đi dạo ven hồ (chạy dọc theo trục Ox) đến bờ hồ đối diện là:
100.( \[\mathop {\max }\limits_{\left[ {0;8} \right]} \] f(x))=100. f(5) = 100. 8,1 =810 (m) và đạt được tại điểm trên đường đi dạo ven hồ cách gốc O một khoảng cách là 500 m.
100.( \[\mathop {\max }\limits_{\left[ {0;8} \right]} \] f(x))=100. f(5) = 100. 8,1 =810 (m) và đạt được tại điểm trên đường đi dạo ven hồ cách gốc O một khoảng cách là 500 m.

c) Xét điểm M(x ; f(x)) thuộc đồ thị hàm số \[y = f(x) = \frac{1}{{10}}( - {x^3} + 9{x^2} - 15x + 56)\] với 0 ≤ x ≤8.

Khoảng cách từ điểm M(x ; f(x)) đến đường thẳng y=−1,5x+18\[ \Leftrightarrow \]-1,5x−y+18=0 là:
\[MH = \frac{{\left| { - 1,5x - \frac{1}{{10}}( - {x^3} + 9{x^2} - 15x + 56) + 18} \right|}}{{\sqrt {{{( - 1,5)}^2} + 1} }} = \frac{{\left| {{x^3} - 9{x^2} + 124} \right|}}{{10\sqrt {3,25} }}\]
Ta khảo sát hàm số: h(x) = x3 –9x2 +124 với 0≤x≤8.
h'(x)=3x2-18x;
h'(x)=0\[ \Leftrightarrow \]x2-6x=0\[ \Leftrightarrow \]x=0 hoặc x = 6.
Bảng biến thiên:
Một hồ nước nhân tạo được xây dựng trong một công viên giải trí. Trong mô hình minh hoạ (Hình vẽ bên dưới) (ảnh 3)

Căn cứ bảng biến thiên, ta có: h(x) > 0 với 0≤x≤8;

\[\mathop {\min }\limits_{\left[ {0;8} \right]} h(x)\]= h(6)=16 tại x= 6.
Do đó, \[\min MH = \mathop {\min }\limits_{\left[ {0;8} \right]} \frac{{\left| {{x^3} - 9{x^2} + 124} \right|}}{{10\sqrt {3,25} }} = \frac{1}{{10\sqrt {3,25} }} \cdot \mathop {\min }\limits_{\left[ {0;8} \right]} h(x) = \frac{{16}}{{10\sqrt {3,25} }} \approx 0,8875\] và đạt được tại x = 6. Khi đó, f(6) = 7,4.
Vậy trong mặt phẳng toạ độ Oxy ở Hình vẽ ban đầu, điểm để xây bến thuyền có toạ độ là M(6 ; 7,4).