Xét một thấu kính hội tụ có tiêu cự f (Hình vẽ). Khoảng cách p từ vật đến thấu kính liên hệ với khoảng cách q từ ảnh đến thấu kính bởi hệ thức: \[\frac{1}{p} + \frac{1}{q} = \frac{1}{f}\]
a) Viết công thức tính q = g(p) như một hàm số của biến \[p \in (f; + \infty )\]
b) Tính các giới hạn \[\mathop {\lim }\limits_{p \to + \infty } g(p);\mathop {\lim }\limits_{p \to {f^ + }} g(p)\]và giải thích ý nghĩa các kết quả này.
c) Lập bảng biến thiên của hàm số q = g(p) trên khoảng \[(f; + \infty )\]

a) Viết công thức tính q = g(p) như một hàm số của biến \[p \in (f; + \infty )\]
b) Tính các giới hạn \[\mathop {\lim }\limits_{p \to + \infty } g(p);\mathop {\lim }\limits_{p \to {f^ + }} g(p)\]và giải thích ý nghĩa các kết quả này.
c) Lập bảng biến thiên của hàm số q = g(p) trên khoảng \[(f; + \infty )\]
Quảng cáo
Trả lời:
a) Ta có: \(\frac{1}{p} + \frac{1}{q} = \frac{1}{f} \Rightarrow q = \frac{{pf}}{{p - f}}\). Do đó, \(q = g(p) = \frac{{pf}}{{p - f}}\) với \(p \in (f; + \infty )\).
b) \(\mathop {\lim }\limits_{p \to + \infty } g(p) = \mathop {\lim }\limits_{p \to + \infty } \frac{{pf}}{{p - f}} = \mathop {\lim }\limits_{p \to + \infty } \frac{f}{{1 - \frac{f}{p}}} = f,\mathop {\lim }\limits_{p \to {f^ + }} g(p) = \mathop {\lim }\limits_{p \to {f^ + }} \frac{{pf}}{{p - f}} = + \infty \)
Ý nghĩa của \(\mathop {\lim }\limits_{p \to + \infty } g(p) = f\) : Khoảng cách từ vật đến thấu kính tiến ra vô cùng thì khoảng cách từ ảnh đến thấu kính xấp xỉ tiêu cự.
Ý nghīa của \(\mathop {\lim }\limits_{p \to {f^ + }} g(p) = + \infty \) : Khoảng cách từ vật đến thấu kính tiến gần về tiều cự \({\rm{f}}\) thì khoảng cách từ ảnh đến thấu kính là càng lớn.
c) Ta có: \({q^\prime } = {g^\prime }(p) = \frac{{ - {f^2}}}{{{{(p - f)}^2}}} < 0\forall p \in (f; + \infty )\) nên hàm số nghịch biến trên \((f; + \infty )\).
Bảng biến thiên:

Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
2) Đồ thị
• Giao điểm của đồ thị với trục tung: (0:2).
• Đồ thị hàm số đi qua điểm (1 ; 6).
Vậy đồ thị hàm số \[y = f(t) = \frac{{26t + 10}}{{t + 5}},t \ge 0\] thể hiện như hình vẽ dưới đây:
Lời giải

Căn cứ bảng biến thiên, ta có: \[\mathop {\max }\limits_{\left[ {0;8} \right]} \] f(x)= f(5)=8,1 tại x= 5.
c) Xét điểm M(x ; f(x)) thuộc đồ thị hàm số \[y = f(x) = \frac{1}{{10}}( - {x^3} + 9{x^2} - 15x + 56)\] với 0 ≤ x ≤8.

Căn cứ bảng biến thiên, ta có: h(x) > 0 với 0≤x≤8;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

