Câu hỏi:

19/08/2025 979 Lưu

Điện trở R (Ω) của một đoạn dây dẫn hình trụ được làm từ vật liệu có điện trở suất ρ (Ωm), chiều dài l (m) và tiết diện S (m2) được cho bởi công thức \[R = \rho .\frac{l}{S}\]

Điện trở R (Ω) của một đoạn dây dẫn hình trụ được làm từ vật liệu có điện trở suất ρ (Ωm) (ảnh 1)
(Vật lí 11 – Chân trời sáng tạo, Nhà xuất bản Giáo dục Việt Nam, 2023, trang 104)

Giả sử người ta khảo sát sự biến thiên của điện trở R theo tiết diện S (ở nhiệt độ 20 oC) của một sợi dây điện dài 10 m làm từ kim loại có điện trở suất ρ và thu được đồ thị hàm số như Hình vẽ bên dướ

Điện trở R (Ω) của một đoạn dây dẫn hình trụ được làm từ vật liệu có điện trở suất ρ (Ωm) (ảnh 2)

a) Có nhận xét gì về sự biến thiên của điện trở R theo tiết diện S?

b) Từ đồ thị, hãy giải thích ý nghĩa của toạ độ giao điểm của đồ thị hàm số với đường thẳng R = 0,001.

Điện trở R (Ω) của một đoạn dây dẫn hình trụ được làm từ vật liệu có điện trở suất ρ (Ωm) (ảnh 3)

c) Tính điện trở suất ρ của dây điện. Từ đó, hãy cho biết dây điện được làm bằng kim loại nào trong số các kim loại được cho ở bảng sau:

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Quan sát đồ thị hàm số ở Hình 6 , ta thấy:

Trên đoạn \((0; + \infty )\), đồ thị hàm số đi xuống từ trái qua phải nên hàm số \({\rm{R}}({\rm{S}})\) nghịch biến trên khoảng đó.

Ta có \(\mathop {\lim }\limits_{x \to  + \infty } R(S) = 0\) nên đường thắng \({\rm{y}} = 0\) hay trục \({\rm{Ox}}\) là tiệm cận ngang của đồ thị hàm số.

Ta có \(\mathop {\lim }\limits_{x \to {0^ + }} R(S) =  + \infty \) nên đường thắng \({\rm{x}} = 0\) hay trục \(O{\rm{y}}\) là tiệm cận đứng của đồ thị hàm số.

Vậy tiết diện \({\rm{S}}\) càng tăng thì điện trở \({\rm{R}}\) càng giảm dần về 0 .

b) Từ đồ thị Hình 6 , ta thấy đồ thị hàm số \({\rm{R}}({\rm{S}})\) cắt đường thẳng \({\rm{R}} = 0,001\) tại điểm \((0,000169;0,01)\), tức là khi tiết diện \(S = 0,000169\;{{\rm{m}}^2}\) thì điện trở \(R = 0,001\Omega \).

c) Với \(S = 0,000169\) thì \(R = 0,001\) và theo bài ra ta có \(\ell  = 10\).

Do đó, \(0,001 = \rho  \cdot \frac{{10}}{{0,000169}}\). Suy ra \(\rho  = 1,69 \cdot {10^{ - 8}}\).

Vậy dây điện được làm bằng kim loại đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: \[f(52) = \frac{{26.52 + 10}}{{52 + 5}} = \frac{{1362}}{{57}} \approx 23,895\] (nghìn người).
Vậy số dân của thị trấn vào năm 2022 khoảng 23 895 người.
b) 1) Sự biến thiên
• Giới hạn tại vô cực và đường tiệm cận ngang:
\[\mathop {\lim }\limits_{t \to  + \infty } f(t) = 26\] . Do đó, đường thẳng y = 26 là tiệm cận ngang của đồ thị hàm số.
\[f'(t) = \frac{{120}}{{{{\left( {t + 5} \right)}^2}}} > 0\] với mọi t≥0.
Bảng biến thiên
Media VietJack
Hàm số ĐB trên nửa khoảng \[\left[ {0; + \infty } \right)\]. Hàm số không có cực trị.

2) Đồ thị

• Giao điểm của đồ thị với trục tung: (0:2).

• Đồ thị hàm số đi qua điểm (1 ; 6).

Vậy đồ thị hàm số \[y = f(t) = \frac{{26t + 10}}{{t + 5}},t \ge 0\] thể hiện như hình vẽ dưới đây:
Số dân của một thị trấn sau t năm kể từ năm 1970 được ước tính bởi công thức: f(t)=26t+10/t+5 (ảnh 1)
c)
c1) Tốc độ tăng dân số vào năm 2022 của thị trấn là: \[f'(52) = \frac{{120}}{{{{\left( {52 + 5} \right)}^2}}} = \frac{{40}}{{1083}}\]
c2)  Ta có: \[f'(t) = 0,192 \Leftrightarrow \frac{{120}}{{{{\left( {t + 5} \right)}^2}}} = 0,192 \Leftrightarrow t = 20{\rm{ }}(do{\rm{ }}t \ge 0)\]
Vậy vào năm 1990, thì tốc độ tăng dân số là 0,192 nghìn người/năm.

Lời giải

a) Trong Hình 25, đồ thị của hàm số \[y = f(x) = \frac{1}{{10}}( - {x^3} + 9{x^2} - 15x + 56)\] cắt tia Ox tại điểm có hoành độ x = 8. Vậy đường dạo ven hồ chạy dọc theo trục Ox dài 800 m.
b) Ta khảo sát hàm số: \[y = f(x) = \frac{1}{{10}}( - {x^3} + 9{x^2} - 15x + 56)\] với 0≤ x ≤8.
f '(x) = \[\frac{1}{{10}}\] (-3x2+18x-15); f '(x)=0\[ \Leftrightarrow \]-x2+6x-5=0\[ \Leftrightarrow \]x=1 hoặc x = 5.
Bảng biến thiên:
Một hồ nước nhân tạo được xây dựng trong một công viên giải trí. Trong mô hình minh hoạ (Hình vẽ bên dưới) (ảnh 2)

Căn cứ bảng biến thiên, ta có: \[\mathop {\max }\limits_{\left[ {0;8} \right]} \] f(x)= f(5)=8,1 tại x= 5.

Vậy khoảng cách lớn nhất theo phương thẳng đứng từ một điểm trên đường đi dạo ven hồ (chạy dọc theo trục Ox) đến bờ hồ đối diện là:
100.( \[\mathop {\max }\limits_{\left[ {0;8} \right]} \] f(x))=100. f(5) = 100. 8,1 =810 (m) và đạt được tại điểm trên đường đi dạo ven hồ cách gốc O một khoảng cách là 500 m.
100.( \[\mathop {\max }\limits_{\left[ {0;8} \right]} \] f(x))=100. f(5) = 100. 8,1 =810 (m) và đạt được tại điểm trên đường đi dạo ven hồ cách gốc O một khoảng cách là 500 m.

c) Xét điểm M(x ; f(x)) thuộc đồ thị hàm số \[y = f(x) = \frac{1}{{10}}( - {x^3} + 9{x^2} - 15x + 56)\] với 0 ≤ x ≤8.

Khoảng cách từ điểm M(x ; f(x)) đến đường thẳng y=−1,5x+18\[ \Leftrightarrow \]-1,5x−y+18=0 là:
\[MH = \frac{{\left| { - 1,5x - \frac{1}{{10}}( - {x^3} + 9{x^2} - 15x + 56) + 18} \right|}}{{\sqrt {{{( - 1,5)}^2} + 1} }} = \frac{{\left| {{x^3} - 9{x^2} + 124} \right|}}{{10\sqrt {3,25} }}\]
Ta khảo sát hàm số: h(x) = x3 –9x2 +124 với 0≤x≤8.
h'(x)=3x2-18x;
h'(x)=0\[ \Leftrightarrow \]x2-6x=0\[ \Leftrightarrow \]x=0 hoặc x = 6.
Bảng biến thiên:
Một hồ nước nhân tạo được xây dựng trong một công viên giải trí. Trong mô hình minh hoạ (Hình vẽ bên dưới) (ảnh 3)

Căn cứ bảng biến thiên, ta có: h(x) > 0 với 0≤x≤8;

\[\mathop {\min }\limits_{\left[ {0;8} \right]} h(x)\]= h(6)=16 tại x= 6.
Do đó, \[\min MH = \mathop {\min }\limits_{\left[ {0;8} \right]} \frac{{\left| {{x^3} - 9{x^2} + 124} \right|}}{{10\sqrt {3,25} }} = \frac{1}{{10\sqrt {3,25} }} \cdot \mathop {\min }\limits_{\left[ {0;8} \right]} h(x) = \frac{{16}}{{10\sqrt {3,25} }} \approx 0,8875\] và đạt được tại x = 6. Khi đó, f(6) = 7,4.
Vậy trong mặt phẳng toạ độ Oxy ở Hình vẽ ban đầu, điểm để xây bến thuyền có toạ độ là M(6 ; 7,4).