Câu hỏi:

07/08/2025 9 Lưu

Khi bỏ qua sức cản của không khí, độ cao (mét) của một vật được phóng thẳng đứng lên trên từ điểm cách mặt đất 2 m với vận tốc ban đầu 24,5 m/s là h(t) = 2+24,5t – 4,9t2 (theo Vật lí đại cương, NXB Giáo dục Việt Nam, 2016).

a) Tìm vận tốc của vật sau 2 giây.

b) Khi nào vật đạt độ cao lớn nhất và độ cao lớn nhất đó là bao nhiêu?

c) Khi nào thì vật chạm đất và vận tốc của vật lúc chạm đất là bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
a) Theo ý nghĩa cơ học của đạo hàm, vận tốc của vật là v = h’(t)=24,5 – 9,8t (m/s).
Do đó, vận tốc của vật sau 2 giây là v(2) =24,5–9,8.2=4,9 (m/s).
b) Vì h(t) là hàm số bậc hai có hệ số a = –4,9 < 0 nên h(t) đạt giá trị lớn nhất tại \[t =  - \frac{b}{{2a}} = \frac{{24,5}}{{2.4,9}} = 2,5\] (giây). Khi đó, độ cao lớn nhất của vật là h(2,5) = 32,625 (m).
c) Vật chạm đất khi độ cao bằng 0, tức là h=2+24,5t – 4,9t2 =0, hay t \[ \approx \] 5,08 (giây).
Vận tốc của vật lúc chạm đất là v(5,08)=24,5 – 9,8.5,08 = -25,284 (m/s).
Vận tốc âm chứng tỏ chiều chuyển động của vật là ngược chiều dương (hướng lên trên) của trục đã chọn (khi lập phương trình chuyển động của vật).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đổi 1 lít = 1000 cm3 .

Gọi r (cm)  là bán kính đáy của hình trụ, h (cm)  là chiều cao của hình trụ.

Diện tích toàn phần của hình trụ là: S = 2πr2 + 2πrh .

Do thể tích của hình trụ là 1000 cm3 nên ta có: 1000 = V = πr2h, hay h = 1000πr2 .

Do đó, diện tích toàn phần của hình trụ là: S = 2πr2 + 2000r, r > 0

Ta cần tìm r  sao cho S  đạt giá trị nhỏ nhất. Ta có:

Một nhà sản xuất cần làm những hộp đựng hình trụ có thể tích 1 lít. Tìm các kích thước của hộp đựng để chi phí vật liệu dùng để sản xuất  (ảnh 1)

Bảng biến thiên:

Một nhà sản xuất cần làm những hộp đựng hình trụ có thể tích 1 lít. Tìm các kích thước của hộp đựng để chi phí vật liệu dùng để sản xuất  (ảnh 2)

Khi đó: h = 1000πr2=1000π3250000π2=100250π3

Vậy cần sản xuất các hộp đựng hình trụ có bán kính đáy r = 500π35.42 (cm) và chiều cao h = 100250π310.84 (cm) .

Lời giải

Ta có: P'(t)=0,75αa-0.75t(b+e-0.75t)2', t0

Theo đề bài, ta có: P(0) = 20  và P'(0) = 12. Do đó, ta có hệ phương trình:

Giả sử số lượng của một quần thể nấm men tại môi trường nuôi cấy trong phòng thí nghiệm được mô hình hoá bằng hàm số  (ảnh 1)

Giải hệ phương trình này, ta được a = 25  và b = 14 .

Khi đó, P'(t)=18,75e-0.75t(14+e-0.75t)2 > 0, t0, tức là số lượng quần thể nấm men luôn tăng.

Tuy nhiên, do Giả sử số lượng của một quần thể nấm men tại môi trường nuôi cấy trong phòng thí nghiệm được mô hình hoá bằng hàm số  (ảnh 2) nên số lượng quần thể nấm men tăng nhưng không vượt quá 100 tế bào.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP