Cho hai vị trí \(A,B\) cách nhau \(615{\rm{\;m}}\), cùng nằm về một phía bờ sông như hình vẽ.

Khoảng cách từ \(A\) và từ \(B\) đến bờ sông lần lượt là \(118{\rm{\;m}}\) và \(487{\rm{\;m}}\). Một người đi từ \(A\) đến bờ sông để lấy nước mang về \(B\). Đoạn đường ngắn nhất là số nguyên dương mà người đó có thể đi là bao nhiêu?
Cho hai vị trí \(A,B\) cách nhau \(615{\rm{\;m}}\), cùng nằm về một phía bờ sông như hình vẽ.
Khoảng cách từ \(A\) và từ \(B\) đến bờ sông lần lượt là \(118{\rm{\;m}}\) và \(487{\rm{\;m}}\). Một người đi từ \(A\) đến bờ sông để lấy nước mang về \(B\). Đoạn đường ngắn nhất là số nguyên dương mà người đó có thể đi là bao nhiêu?
Quảng cáo
Trả lời:

Giả sử người đó đi từ \(A\) đến \(M\) để lấy nước và đi từ \(M\) về \(B\).
Dễ dàng tính được \(BD = 369,EF = 492\).
Ta đặt \(EM = x\), khi đó ta được: \(MF = 492 - x;\,AM = \sqrt {{x^2} + {{118}^2}} \,;\,BM = \sqrt {{{\left( {492 - x} \right)}^2} + {{487}^2}} {\rm{.}}\)
Như vậy ta có hàm số \(f\left( x \right)\) được xác định bằng tổng quãng đường \(AM\) và \(MB\):
Xét hàm \(f\left( x \right) = \sqrt {{x^2} + {{118}^2}} + \sqrt {{{\left( {492 - x} \right)}^2} + {{487}^2}} {\rm{\;}}\) với\(x \in \left[ {0;492} \right]\).
Ta cần tìm giá trị nhỏ nhất của \(f\left( x \right)\) để có được quãng đường ngắn nhất và từ đó xác định được vị trí điểm \(M\).
Đạo hàm: \[f'\left( x \right) = \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} - \frac{{492 - x}}{{\sqrt {{{\left( {492 - x} \right)}^2} + {{487}^2}} }}{\rm{ = 0}}\]
\( \Leftrightarrow \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} = \frac{{492 - x}}{{\sqrt {{{\left( {492 - x} \right)}^2} + {{487}^2}} }} \Leftrightarrow x\sqrt {{{\left( {492 - x} \right)}^2} + {{487}^2}} = \left( {492 - x} \right)\sqrt {{x^2} + {{118}^2}} \)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x^2}\left[ {{{\left( {492 - x} \right)}^2} + {{487}^2}} \right] = {{\left( {492 - x} \right)}^2}\left( {{x^2} + {{118}^2}} \right)}\\{0 \le x \le 492}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{{\left( {487x} \right)}^2} = {{\left( {58056 - 118x} \right)}^2}}\\{0 \le x \le 492}\end{array}} \right.} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = \frac{{58056}}{{605}}{\rm{\;hay\;}}x = - \frac{{58056}}{{369}} \Leftrightarrow x = \frac{{58056}}{{605}}}\\{0 \le x \le 492}\end{array}} \right.\).
Hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {0;492} \right]\).
So sánh các giá trị của \(f\left( 0 \right)\,;\,f\left( {\frac{{58056}}{{605}}} \right)\,;\,f\left( {492} \right)\) ta có giá trị nhỏ nhất \(f\left( {\frac{{58056}}{{605}}} \right) \approx 779,8{\rm{\;m}}\).
Khi đó quãng đường đi ngắn nhất là xấp xỉ \(779,8{\rm{\;}} \approx {\rm{780m}}\).
Đáp án: 780.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Bán kính của hình bán nguyệt là \(\frac{x}{2}\) nên nửa chu vi bán nguyệt là \(\frac{{\pi x}}{2}\).
b) Đúng. Ta có \(2\left( {x + y} \right) + \frac{{\pi x}}{2} = 8 \Leftrightarrow y = 4 - \frac{{x\left( {4 + \pi } \right)}}{4}\).
c) Sai. Diện tích của cửa sổ:\(S = xy + \frac{1}{2}\pi {\left( {\frac{x}{2}} \right)^2} = x\left( {4 - x - \frac{{\pi x}}{4}} \right) + \frac{{\pi {x^2}}}{8} = 4x - {x^2} - \frac{{\pi {x^2}}}{8}\).
d) Đúng. \(S\) đạt giá trị lớn nhất khi \(x = \frac{4}{{2 + \frac{\pi }{4}}} = \frac{{16}}{{8 + \pi }}\) nên \(y = 4 - x - \frac{{\pi x}}{4} = \frac{{16}}{{8 + \pi }}\).
Lời giải
a) Đúng. Chi phí mỗi ngày là tổng các chi phí nên \(C\left( x \right) = 0,0005{x^2} + 0,15x + 5\) (triệu đồng).
b) Sai. Khi \(x = 100\), ta có \(C\left( {100} \right) = 0,0005 \times {100^2} + 0,15 \times 100 + 5 = 25\).
c) Sai. Chi phí trung bình trên mỗi khối sản phẩm là:
\(\overline c \left( x \right) = \frac{{0,0005{x^2} + 0,15x + 5}}{x} = 0,0005x + 0,15 + \frac{5}{x}\).
d) Đúng. Xét hàm số \(\overline c \left( x \right) = 0,0005x + 0,15 + \frac{5}{x}\), \(0 < x \le 200\).
Ta có \({\overline c ^{\,\prime }}\left( x \right) = \frac{5}{{{{10}^4}}} - \frac{5}{{{x^2}}}\), \({\overline c ^\prime }\left( x \right) = 0 \Leftrightarrow {x^2} = {10^4} \Rightarrow x = 100\) (do \(x \in \left( {0;200} \right]\).
Bảng biến thiên:
Vậy chi phí trung bình giảm khi hàm số \(\overline c \left( x \right)\)nghịch biến, tức là \(x \in \left( {0;100} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.