Câu hỏi:

02/10/2025 14 Lưu

Một mẫu giấy in hình chữ nhật được thiết kế với vùng in có diện tích \(300\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\), lề trái và lề phải là 2 cm, lề trên và lề dưới là 3 cm. Gọi \(x\left( {{\rm{cm}}} \right)\) là chiều rộng của tờ giấy.

a) Tính diện tích của tờ giấy theo \(x\).

b) Kí hiệu diện tích tờ giấy là \(S\left( x \right)\). Khảo sát sự biến thiên của hàm số \(y = S\left( x \right)\).

c) Tìm kích thước của tờ giấy sao cho nguyên liệu giấy được sử dụng là ít nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(y\,(\;{\rm{cm}})\) là chiều dài của tờ giấy. Theo giả thiết, ta có \(\left( {x - 4} \right)\left( {y - 6} \right) = 300\).

Suy ra \(y = 6 + \frac{{300}}{{x - 4}}\).

a) Diện tích của tờ giấy được thiết kế là: \(S\left( x \right) = xy = \frac{{x\left( {6x + 276} \right)}}{{x - 4}}.\)

b) Khảo sát sự biến thiên của hàm số \(S\left( x \right)\):

Tập xác định: \(\left( {4; + \infty } \right)\).

Sự biến thiên: Ta có \(S\left( x \right) = 6x + 300 + \frac{{1200}}{{x - 4}}\).

\(S'\left( x \right) = \frac{{6{{\left( {x - 4} \right)}^2} - 1200}}{{{{\left( {x - 4} \right)}^2}}},S'\left( x \right) = 0 \Leftrightarrow x = {x_0} = 4 + 10\sqrt 2 \).

- Hàm số đồng biến trên khoảng \(\left( {4 + 10\sqrt 2 ; + \infty } \right)\), nghịch biến trên khoảng \(\left( {4;4 + 10\sqrt 2 } \right)\).

- Hàm số đạt cực tiểu tại \(x = 4 + 10\sqrt 2 \).

- Giới hạn vô cực: \(\mathop {\lim }\limits_{x \to {4^ + }} S\left( x \right) =  + \infty \), giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to  + \infty } S\left( x \right) =  + \infty \).

- Bảng biến thiên:

Một mẫu giấy in hình chữ nhật được thiết kế với vùng in có diện tích \(300\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\), lề trái và lề phải là 2 cm, lề trên và lề dưới là 3 cm. Gọi \(x\left( {{\rm{cm}}} \right)\) là chiều rộng của tờ giấy. (ảnh 1)

c) Kích thước của tờ giấy để nguyên liệu sử dụng ít nhất là:

Chiều rộng \(x = 4 + 10\sqrt 2  \approx 18,14(\;{\rm{cm}})\), Chiều dài \(y = 6 + \frac{{300}}{{x - 4}} = 6 + \frac{{30}}{{\sqrt 2 }} \approx 27,21(\;{\rm{cm}})\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Bán kính của hình bán nguyệt là \(\frac{x}{2}\) nên nửa chu vi bán nguyệt là \(\frac{{\pi x}}{2}\).

b) Đúng. Ta có \(2\left( {x + y} \right) + \frac{{\pi x}}{2} = 8 \Leftrightarrow y = 4 - \frac{{x\left( {4 + \pi } \right)}}{4}\).

c) Sai. Diện tích của cửa sổ:\(S = xy + \frac{1}{2}\pi {\left( {\frac{x}{2}} \right)^2} = x\left( {4 - x - \frac{{\pi x}}{4}} \right) + \frac{{\pi {x^2}}}{8} = 4x - {x^2} - \frac{{\pi {x^2}}}{8}\).

d) Đúng. \(S\) đạt giá trị lớn nhất khi \(x = \frac{4}{{2 + \frac{\pi }{4}}} = \frac{{16}}{{8 + \pi }}\) nên \(y = 4 - x - \frac{{\pi x}}{4} = \frac{{16}}{{8 + \pi }}\).

Lời giải

a) Đúng. Chi phí mỗi ngày là tổng các chi phí nên \(C\left( x \right) = 0,0005{x^2} + 0,15x + 5\) (triệu đồng).

b) Sai. Khi \(x = 100\), ta có \(C\left( {100} \right) = 0,0005 \times {100^2} + 0,15 \times 100 + 5 = 25\).

c) Sai. Chi phí trung bình trên mỗi khối sản phẩm là:

\(\overline c \left( x \right) = \frac{{0,0005{x^2} + 0,15x + 5}}{x} = 0,0005x + 0,15 + \frac{5}{x}\).

d) Đúng. Xét hàm số \(\overline c \left( x \right) = 0,0005x + 0,15 + \frac{5}{x}\), \(0 < x \le 200\).

Ta có \({\overline c ^{\,\prime }}\left( x \right) = \frac{5}{{{{10}^4}}} - \frac{5}{{{x^2}}}\), \({\overline c ^\prime }\left( x \right) = 0 \Leftrightarrow {x^2} = {10^4} \Rightarrow x = 100\) (do \(x \in \left( {0;200} \right]\).

Bảng biến thiên:

Tại một cơ sở sản xuất nước tinh khiết, nhân viên phụ trách sản xuất cho biết, nếu mỗi ngày cơ sở này sản xuất \(x\,\,\left( {{{\rm{m}}^{\rm (ảnh 1)

Vậy chi phí trung bình giảm khi hàm số \(\overline c \left( x \right)\)nghịch biến, tức là \(x \in \left( {0;100} \right)\).