Cho hàm số y= f(x) =ax3+ bx2+cx+d có đạo hàm là hàm số y= f’ (x) với đồ thị như hình vẽ bên. Biết rằng đồ thị hàm số y= f( x) tiếp xúc với trục hoành tại điểm có hoành độ dương . Khi đó đồ thị hàm số y= f( x) cắt trục tung tại điểm có tung độ là bao nhiêu?
Quảng cáo
Trả lời:

+ Ta có đạo hàm f’(x) = 3ax2+ 2bx+c .
+ Dựa vào đồ thị hàm số y = f’(x) ta thấy đồ thị hàm số đi qua các điểm (0; 0); (1; -1); (2; 0) nên a = 1/3; b = -1; c = 0.
Do vậy hàm số cần tìm có dạng y = 1/3 x3-x2+ d .
Điểm tiếp xúc với trục hoành là cực trị của đồ thị hàm số và tại đó ta có x = 0 hoặc x = 2.
+ Vì đồ thị hàm số y = f(x) tiếp xúc với trục hoành tại điểm có hoành độ dương nên đồ thị hàm số tiếp xúc trục hoành tại điểm x = 2 nghĩa là:
f(2) = 0 hay 8/3 - 4 + d= 0 nên d = 4/3
Chọn D.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương trình hoành độ giao điểm của đồ thị hàm số với trục hoành là
Vì x=0 không là nghiệm của phương trình, nên phương trình tương đương với
. Xét hàm số:
Bảng biến thiên:
Dựa vào bảng biến thiên ta thấy đồ thị cắt trục hoành tại một điểm duy nhất khi và chỉ khi m> -3.
Vậy m>-3 thỏa yêu cầu bài toán.
Chọn C.
Lời giải
Ta có x3 - 3x2 + 1 - m = 0 (1) là phương trình hoành độ giao điểm giữa hai đồ thị hàm số y = x3-3x2+1 và y = m (là đường thẳng song song hoặc trùng với Ox).
Xét y = x3-3x2+1 .
Tính y’ = 3x2- 6x
Ta có
Ta có x = 1 thì y = -1
Số nghiệm của phương trình chính là số giao điểm của đồ thị y = x3-3x2+1 và đường thẳng y = m .
Do đó, yêu cầu bài toán khi và chỉ khi -3 < m < -1
Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
giải giùm em vs ạ