Câu hỏi:

15/11/2019 8,030 Lưu

Cho hàm số y=x+22x+31 .Viết phương trình tiếp tuyến của đồ thị hàm số đã cho, biết tiếp tuyến đó cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A; B  và tam giác OAB cân tại gốc tọa độ.

A.  y= -x+1

B. y= -x

C. y= -x- 1

D. y= -x- 2

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

+ Gọi M(a; b)   là toạ độ của tiếp điểm

Đạo hàm y'=-1(2x+3)2<0; x  .

+ Do tam giác OAB cân tại O  nên tiếp tuyến ∆ song song với đường thẳng y= -x (vì tiếp tuyến có hệ số góc âm). 

Nghĩa là 

-Với a= -1; b= 1   phương trình ∆: y- 1= -( x+ 1) hay y= -x ( loại) .

-Với a= -2; b= 0 thì ∆ : y- 0= -( x+ 2) hay y=-x-2 (nhận).

Vậy phương trình tiếp tuyến cần tìm là  y= -x- 2.

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. min[-3;3]g(x)=g(1).

B. max[-3;3]g(x)=g(1).

C. min[-3;3]g(x)=g(3).

D. Không tồn tại giá trị nhỏ nhất của g( x)  trên [-3;3]

Lời giải

Ta có:

+ Với x< - 3 ta có:  f’ (x)< x + 1  suy ra hàm số nghịch biến trên khoảng ( -∞; -3)

+ Xét hàm số g( x) ; ta cần so sánh g(-3) và g( 3)

Ta có g(x) = 2f(x) – ( x + 1) 2 nên g’(x) = 2f’(x) - 2(x + 1)

Phương trình  (Dựa vào đồ thị hàm số y= f’ (x)) .

Bảng xét dấu của g’(x)

Dựa vào bảng xét dấu, ta được max[-3;3]g(x)=g(1).

Dựa vào hình vẽ lại có 

Do đó g( 1) – g( -3) > g( 1) – g( 3) hay g( 3) > g( -3) .

Suy ra GTNN của hàm số trên đoạn [- 3; 3] là  g( -3) .

Chọn B.

Lời giải

Theo bài ra, thanh sào sẽ đi qua các điểm B, M , C (hình vẽ dưới)

Suy ra độ dài thanh sào là 

Đặt ,do đó L=24sin x+3cos x

 

Yêu cầu bài toán Lminf(x)=24sin x+3cos x min

Ta có f'(x)=3 sin xcos2x-24 cos xsin2x=0sin3x=8cos3xtan x=2cos x =11+tan2x=15sin x=1-cos2x=25

 

Suy ra min(0;π2)f(x)=155 . Vậy độ dài tối thiểu của thanh sào là 155

Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP