Câu hỏi:
06/02/2021 10,076Cho hàm số có đồ thị là (C) , đường thẳng d: y = x + m. Với mọi m ta luôn có d cắt (C) tại 2 điểm phân biệt A; B. Gọi k1; k2 lần lượt là hệ số góc của các tiếp tuyến với (C) tại A; B. Tìm m để (k1 + k2) đạt giá trị lớn nhất.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
- Phương trình hoành độ giao điểm của d và (C) là
- Theo định lí Viet ta có x1 + x2 = -m;
Giả sử A(x1; y1); B(x2; y2).
- Ta có nên tiếp tuyến của (C) tại A và B có hệ số góc lần lượt là và .Vậy
- Dấu "=" xảy ra khi và chỉ khi m = -1.
Vậy k1 + k2 đạt giá trị lớn nhất bằng -2 khi m = -1.
Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y=x3+3x2+mx+m-2 với m là tham số thực, có đồ thị là (C) . Tìm tất cả các giá trị của m để (C) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành.
Câu 2:
Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số có hai tiệm cận ngang.
Câu 3:
Tìm tất cả các giá trị của tham số m để đồ thị hàm số y= x3-3mx2+2 có hai điểm cực trị A: B sao cho A: B và M( 1; -2) thẳng hàng.
Câu 4:
Cho hàm số y= -x3+3mx2-3m-1 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số đã cho có hai điểm cực trị đối xứng với nhau qua đường thẳng d: x+8y-74=0.
Câu 5:
Cho hàm số y= 2x3-3( m+ 1) x2+ 6mx+ m3 với m là tham số thực. Tìm tất cả các giá trị của m để đồ thị hàm số có hai điểm cực trị A; B thỏa mãn AB =
Câu 6:
Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số có đúng một tiệm cận đứng.
Câu 7:
Cho hàm số y = x4 - 2(m2 - m + 1)x2 + m - 1 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số có một điểm cực đại và hai điểm cực tiểu, đồng thời khoảng cách giữa hai điểm cực tiểu ngắn nhất.
về câu hỏi!