Câu hỏi:
18/11/2019 24,977Cho hàm số có đồ thị (C) . Gọi I là giao điểm của hai tiệm cận. Tiếp tuyến của (C) cắt 2 tiệm cận tại A và B sao cho chu vi tam giác IAB đạt giá trị nhỏ nhất. Khoảng cách lớn nhất từ gốc tọa độ đến tiếp tuyến gần giá trị nào nhất?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
+ Gọi
Phương trình tiếp tuyến tại M có dạng
+ Giao điểm của với tiệm cận đứng là
+ Giao điểm của với tiệm cận ngang là B( 2x0-1; 2).
Ta có
Tam giác IAB vuông tại I có diện tích không đổi nên chu vi tam giác IAB đạt giá trị nhỏ nhất khi
IA=IB
+Với thì phương trình tiếp tuyến là . Suy ra
+ Với thì phương trình tiếp tuyến là . Suy ra
Vậy khoảng cách lớn nhất là gần với giá trị 5 nhất trong các đáp án.
Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y=x3+3x2+mx+m-2 với m là tham số thực, có đồ thị là (C) . Tìm tất cả các giá trị của m để (C) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành.
Câu 2:
Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số có hai tiệm cận ngang.
Câu 3:
Tìm tất cả các giá trị của tham số m để đồ thị hàm số y= x3-3mx2+2 có hai điểm cực trị A: B sao cho A: B và M( 1; -2) thẳng hàng.
Câu 4:
Cho hàm số y= -x3+3mx2-3m-1 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số đã cho có hai điểm cực trị đối xứng với nhau qua đường thẳng d: x+8y-74=0.
Câu 5:
Cho hàm số y= 2x3-3( m+ 1) x2+ 6mx+ m3 với m là tham số thực. Tìm tất cả các giá trị của m để đồ thị hàm số có hai điểm cực trị A; B thỏa mãn AB =
Câu 6:
Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số có đúng một tiệm cận đứng.
Câu 7:
Cho hàm số y = x4 - 2(m2 - m + 1)x2 + m - 1 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số có một điểm cực đại và hai điểm cực tiểu, đồng thời khoảng cách giữa hai điểm cực tiểu ngắn nhất.
về câu hỏi!